Skip to main content

Advertisement

Log in

Killing of Escherichia coli by Myxococcus xanthus in Aqueous Environments Requires Exopolysaccharide-Dependent Physical Contact

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nutrient or niche-based competition among bacteria is a widespread phenomenon in the natural environment. Such interspecies interactions are often mediated by secreted soluble factors and/or direct cell–cell contact. As ubiquitous soil bacteria, Myxococcus species are able to produce a variety of bioactive secondary metabolites to inhibit the growth of other competing bacterial species. Meanwhile, Myxococcus spp. also exhibit sophisticated predatory behavior, an extreme form of competition that is often stimulated by close contact with prey cells and largely depends on the availability of solid surfaces. Myxococcus spp. can also be isolated from aquatic environments. However, studies focusing on the interaction between Myxococcus and other bacteria in such environments are still limited. In this study, using the well-studied Myxococcus xanthus DK1622 and Escherichia coli as model interspecies interaction pair, we demonstrated that in an aqueous environment, M. xanthus was able to kill E. coli in a cell contact-dependent manner and that the observed contact-dependent killing required the formation of co-aggregates between M. xanthus and E. coli cells. Further analysis revealed that exopolysaccharide (EPS), type IV pilus, and lipopolysaccharide mutants of M. xanthus displayed various degrees of attenuation in E. coli killing, and it correlated well with the mutants' reduction in EPS production. In addition, M. xanthus showed differential binding ability to different bacteria, and bacterial strains unable to co-aggregate with M. xanthus can escape the killing, suggesting the specific nature of co-aggregation and the targeted killing of interacting bacteria. In conclusion, our results demonstrated EPS-mediated, contact-dependent killing of E. coli by M. xanthus, a strategy that might facilitate the survival of this ubiquitous bacterium in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Konovalova A, Sogaard-Andersen L (2011) Close encounters: contact-dependent interactions in bacteria. Mol Microbiol 81:297–301

    Article  CAS  PubMed  Google Scholar 

  3. Katsuyama C, Nakaoka S, Takeuchi Y, Tago K, Hayatsu M, Kato K (2009) Complementary cooperation between two syntrophic bacteria in pesticide degradation. J Theor Biol 256:644–654

    Article  CAS  PubMed  Google Scholar 

  4. Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71:7838–7845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hu H, Ochi K (2001) Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67:1885–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Xiao Y, Wei X, Ebright R, Wall D (2011) Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 193:4626–4633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hayes CS, Aoki SK, Low DA (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet 44:71–90

    Article  CAS  PubMed  Google Scholar 

  10. Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiol Rev 54:473–501

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63:621–641

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Berleman JE, Kirby JR (2007) Multicellular development in Myxococcus xanthus is stimulated by predator–prey interactions. J Bacteriol 189:5675–5682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Morgan AD, MacLean RC, Hillesland KL, Velicer GJ (2010) Comparative analysis of myxococcus predation on soil bacteria. Appl Environ Microbiol 76:6920–6927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hook LA (1977) Distribution of myxobacters in aquatic habitats of an alkaline bog. Appl Environ Microbiol 34:333–335

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Brockman ER, Boyd WL (1963) Myxobacteria from soils of the Alaskan and Canadian Arctic. J Bacteriol 86:605–606

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Li YZ, Hu W, Zhang YQ, Qiu Z, Zhang Y, Wu BH (2002) A simple method to isolate salt-tolerant myxobacteria from marine samples. J Microbiol Methods 50:205–209

    Article  CAS  PubMed  Google Scholar 

  17. Reichenbach H (1999) The ecology of the myxobacteria. Environ Microbiol 1:15–21

    Article  CAS  PubMed  Google Scholar 

  18. Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427

    Article  CAS  PubMed  Google Scholar 

  19. Zusman DR, Scott AE, Yang Z, Kirby JR (2007) Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5:862–872

    Article  CAS  PubMed  Google Scholar 

  20. Hornick DB, Thommandru J, Smits W, Clegg S (1995) Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect Immun 63:2026–2032

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Campos JM, Geisselsoder J, Zusman DR (1978) Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119:167–178

    Article  CAS  PubMed  Google Scholar 

  22. Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA (2005) Contact-dependent inhibition of growth in Escherichia coli. Science 309:1245–1248

    Article  CAS  PubMed  Google Scholar 

  23. He XS, Tian Y, Guo LH, Lux R, Zusman DR, Shi WY (2010) Oral-derived bacterial flora defends its domain by recognizing and killing intruders—a molecular analysis using Escherichia coli as a model intestinal bacterium. Microb Ecol 60:655–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yang Z, Lux R, Hu W, Hu C, Shi W (2010) PilA localization affects extracellular polysaccharide production and fruiting body formation in Myxococcus xanthus. Mol Microbiol 76:1500–1513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shimkets LJ (1986) Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J Bacteriol 166:837–841

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kaiser D (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76:5952–5956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yang ZM, Geng YZ, Xu D, Kaplan HB, Shi WY (1998) A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30:1123–1130

    Article  CAS  PubMed  Google Scholar 

  28. Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Z, Kaplan HB, Zusman DR, Shi W (2005) Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55:206–220

    Article  CAS  PubMed  Google Scholar 

  29. Bowden MG, Kaplan HB (1998) The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol 30:275–284

    Article  CAS  PubMed  Google Scholar 

  30. Arnold JW, Shimkets LJ (1988) Cell surface properties correlated with cohesion in Myxococcus xanthus. J Bacteriol 170:5771–5777

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Hu W, Wang J, McHardy I, Lux R, Yang Z, Li Y, Shi W (2012) Effects of exopolysaccharide production on liquid vegetative growth, stress survival, and stationary phase recovery in Myxococcus xanthus. J Microbiol 50:241–248

    Article  CAS  PubMed  Google Scholar 

  32. Behmlander RM, Dworkin M (1991) Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J Bacteriol 173:7810–7820

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Dworkin M (1999) Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. Bioessays 21:590–595

    Article  CAS  PubMed  Google Scholar 

  34. Sudo S, Dworkin M (1972) Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol 110:236–245

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Rosenberg E, Keller KH, Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770–777

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Wu SS, Kaiser D (1996) Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 178:5817–5821

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Aida Kaplan, Tingxi Wu, Emil Simanian, and Shuai Le for their help in preparing the bacterial strains and the National BioResource Project (NIG, Japan) for providing E. coli mutant libraries. This work was supported by NIH grant GM54666 to Wenyuan Shi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, H., He, X., Lux, R. et al. Killing of Escherichia coli by Myxococcus xanthus in Aqueous Environments Requires Exopolysaccharide-Dependent Physical Contact. Microb Ecol 66, 630–638 (2013). https://doi.org/10.1007/s00248-013-0252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0252-x

Keywords

Navigation