Skip to main content
Log in

Environment-Related Adaptive Changes of Gut Commensal Microbiota Do not Alter Colonic Toll-Like Receptors but Modulate the Local Expression of Sensory-Related Systems in Rats

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Pathogenic and protective roles have been attributed to gut commensal microbiota (GCM) in gastrointestinal inflammatory and functional disorders. We have shown that the adaptation to a new environment implies specific changes in the composition of GCM. Here we assessed if environment-related adaptive changes of GCM modulate the expression of colonic Toll-like receptors (TLRs) and sensory-related systems in rats. Adult male SD rats were maintained under different environmental conditions: barrier-breed-and-maintained, barrier-breed adapted to conventional conditions or conventional-breed-and-maintained. Fluorescent in situ hybridization and real-time quantitative PCR (qPCR) were used to characterize luminal ceco-colonic microbiota. Colonic expression of TLR2, TLR4, TLR5, and TLR7, cannabinoid receptors (CB1/CB2), μ-opioid receptor (MOR), transient receptor potential vanilloid (TRPV1, TRPV3, and TRPV4), protease-activated receptor 2 (PAR-2), and calcitonin gene-related peptide were quantified by RT-qPCR. CB1, CB2 and MOR expression, was evaluated also by immunohistochemistry. In rats, housing-related environmental conditions induce specific changes of GCM, without impact on the expression of TLR-dependent bacterial recognition systems. Expression of sensory-related markers (MOR, TRPV3, PAR-2, and CB2) decreased with the adaptation to a conventional environment, correlating with changes in Bacteroides spp., Lactobacillus spp., and Bifidobacterium spp. counts. This suggests an interaction between GCM and visceral sensory mechanisms, which might be part of the mechanisms underlying the beneficial effects of some bacterial groups on functional and inflammatory gastrointestinal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aguilera M, Vergara P, Martinez V (2013) Stress and antibiotics alter luminal and wall-adhered microbiota and enhance the local expression of visceral sensory-related systems in mice. Neurogastroenterology & Motility, in press. doi:10.1111/nmo.12154

  2. Amaral FA, Sachs D, Costa VV, Fagundes CT, Cisalpino D, Cunha TM, Ferreira SH, Cunha FQ, Silva TA, Nicoli JR, Vieira LQ, Souza DG, Teixeira MM (2008) Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci U S A 105:2193–2197

    Article  PubMed  CAS  Google Scholar 

  3. Blackshaw LA, Brierley SM, Hughes PA (2010) TRP channels: new targets for visceral pain. Gut 59:126–135

    Article  PubMed  CAS  Google Scholar 

  4. Brusberg M, Arvidsson S, Kang D, Larsson H, Lindstrom E, Martinez V (2009) CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. J Neurosci 29:1554–1564

    Article  PubMed  CAS  Google Scholar 

  5. Bueno L (2008) Protease activated receptor 2: a new target for IBS treatment. Eur Rev Med Pharmacol Sci 12(Suppl 1):95–102

    PubMed  Google Scholar 

  6. Camp JG, Kanther M, Semova I, Rawls JF (2009) Patterns and scales in gastrointestinal microbial ecology. Gastroenterology 136:1989–2002

    Article  PubMed  Google Scholar 

  7. Campbell JH, Foster CM, Vishnivetskaya T, Campbell AG, Yang ZK, Wymore A, Palumbo AV, Chesler EJ, Podar M (2012) Host genetic and environmental effects on mouse intestinal microbiota. ISME J 6:2033–2044

    Article  PubMed  CAS  Google Scholar 

  8. Cario E (2008) Therapeutic impact of toll-like receptors on inflammatory bowel diseases: a multiple-edged sword. Inflamm Bowel Dis 14:411–421

    Article  PubMed  Google Scholar 

  9. Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT (2012) Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu Rev Physiol 74:177–198

    Article  PubMed  CAS  Google Scholar 

  10. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    Article  PubMed  Google Scholar 

  11. Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S (2002) Localisation of cannabinoid CB(1) receptor immunoreactivity in the guinea pig and rat myenteric plexus. J Comp Neurol 448:410–422

    Article  PubMed  CAS  Google Scholar 

  12. Davis MP (2012) Drug management of visceral pain: concepts from basic research. Pain Res Treat 2012:265605

    PubMed  Google Scholar 

  13. Dinoto A, Suksomcheep A, Ishizuka S, Kimura H, Hanada S, Kamagata Y, Asano K, Tomita F, Yokota A (2006) Modulation of rat cecal microbiota by administration of raffinose and encapsulated Bifidobacterium breve. Appl Environ Microbiol 72:784–792

    Article  PubMed  CAS  Google Scholar 

  14. Diop L, Guillou S, Durand H (2008) Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind, placebo-controlled, randomized trial. Nutr Res 28:1–5

    Article  PubMed  CAS  Google Scholar 

  15. Eutamene H, Lamine F, Chabo C, Theodorou V, Rochat F, Bergonzelli GE, Corthesy-Theulaz I, Fioramonti J, Bueno L (2007) Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J Nutr 137:1901–1907

    PubMed  CAS  Google Scholar 

  16. Fan YJ, Chen SJ, Yu YC, Si JM, Liu B (2006) A probiotic treatment containing Lactobacillus, Bifidobacterium and Enterococcus improves IBS symptoms in an open label trial. J Zhejiang Univ Sci B 7:987–991

    Article  PubMed  CAS  Google Scholar 

  17. Haarman M, Knol J (2006) Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 72:2359–2365

    Article  PubMed  CAS  Google Scholar 

  18. Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW (2002) Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68:2982–2990

    Article  PubMed  CAS  Google Scholar 

  19. Holzer P (2009) Opioid receptors in the gastrointestinal tract. Regul Pept 155:11–17

    Article  PubMed  CAS  Google Scholar 

  20. Honda K, Takeda K (2009) Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol 2:187–196

    Article  PubMed  CAS  Google Scholar 

  21. Izzo AA, Sharkey KA (2010) Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 126:21–38

    Article  PubMed  CAS  Google Scholar 

  22. Kajander K, Hatakka K, Poussa T, Farkkila M, Korpela R (2005) A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther 22:387–394

    Article  PubMed  CAS  Google Scholar 

  23. Kelly D, Mulder IE (2012) Microbiome and immunological interactions. Nutr Rev 70(Suppl 1):S18–S30

    Article  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  25. Looijer-van Langen MA, Dieleman LA (2009) Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis 15:454–462

    Article  PubMed  Google Scholar 

  26. Ma BW, Bokulich NA, Castillo PA, Kananurak A, Underwood MA, Mills DA, Bevins CL (2012) Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PLoS One 7:e47416

    Article  PubMed  CAS  Google Scholar 

  27. Marques R, Boneca IG (2011) Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 68:3661–3673

    Article  PubMed  CAS  Google Scholar 

  28. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  PubMed  CAS  Google Scholar 

  29. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P (2007) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13:35–37

    Article  PubMed  CAS  Google Scholar 

  30. Selinummi J, Seppala J, Yli-Harja O, Puhakka JA (2005) Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques 39:859–863

    Article  PubMed  CAS  Google Scholar 

  31. Teran-Ventura E, Roca M, Martin MT, Abarca ML, Martinez V, Vergara P (2010) Characterization of housing-related spontaneous variations of gut microbiota and expression of toll-like receptors 2 and 4 in rats. Microb Ecol 60:691–702

    Article  PubMed  CAS  Google Scholar 

  32. Veerappan GR, Betteridge J, Young PE (2012) Probiotics for the treatment of inflammatory bowel disease. Curr Gastroenterol Rep 14:324–333

    Article  PubMed  Google Scholar 

  33. Verdu EF, Bercik P, Verma-Gandhu M, Huang XX, Blennerhassett P, Jackson W, Mao Y, Wang L, Rochat F, Collins SM (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55:182–190

    Article  PubMed  CAS  Google Scholar 

  34. Verdu EF, Collins SM (2005) Irritable bowel syndrome and probiotics: from rationale to clinical use. Curr Opin Gastroenterol 21:697–701

    Article  PubMed  Google Scholar 

  35. Whelan K (2011) Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr Opin Clin Nutr Metab Care 14:581–587

    Article  PubMed  Google Scholar 

  36. Wildt S, Munck LK, Vinter-Jensen L, Hanse BF, Nordgaard-Lassen I, Christensen S, Avnstroem S, Rasmussen SN, Rumessen JJ (2006) Probiotic treatment of collagenous colitis: a randomized, double-blind, placebo-controlled trial with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis. Inflamm Bowel Dis 12:395–401

    Article  PubMed  Google Scholar 

  37. Williams EA, Stimpson J, Wang D, Plummer S, Garaiova I, Barker ME, Corfe BM (2009) Clinical trial: a multistrain probiotic preparation significantly reduces symptoms of irritable bowel syndrome in a double-blind placebo-controlled study. Aliment Pharmacol Ther 29:97–103

    Article  PubMed  CAS  Google Scholar 

  38. Wright KL, Duncan M, Sharkey KA (2008) Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 153:263–270

    Article  PubMed  CAS  Google Scholar 

  39. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    Article  PubMed  CAS  Google Scholar 

  40. Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R, Haslberger AG (2011) Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One 6:e28654

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Emma Martínez and Antonio Acosta for their technical support in different stages of the study. This work was supported by grants BFU2009-08229 from the Spanish Ministerio de Ciencia e Innovación and 2009SGR-708 from the Generalitat de Catalunya. M. Aguilera received personal support from the FPI program (BES-2010-037699—Spanish Ministerio de Ciencia e Innovación).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilera, M., Vergara, P. & Martínez, V. Environment-Related Adaptive Changes of Gut Commensal Microbiota Do not Alter Colonic Toll-Like Receptors but Modulate the Local Expression of Sensory-Related Systems in Rats. Microb Ecol 66, 232–243 (2013). https://doi.org/10.1007/s00248-013-0241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0241-0

Keywords

Navigation