Skip to main content
Log in

Feedstocks Affect the Diversity and Distribution of Propionate CoA-Transferase Genes (pct) in Anaerobic Digesters

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) is an attractive microbiological technology for both waste treatment and energy production. Syntrophic acetogenic bacteria are an important guild because they are essential for maintaining efficient and stable AD operation. However, this guild is poorly understood due to difficulties to culture them. In this study, we developed specific PCR assays targeting the propionate-CoA transferase genes (pct) to investigate their diversity and distribution in several mesophilic anaerobic digesters and a bench-scale temperature-phased AD (TPAD) system. Phylogenetic analysis of sequenced pct amplicons revealed the occurrence of Syntrophobacter fumaroxidans and six other clusters of putative pct genes. Principal coordinate analysis (PCoA) showed that pct diversity and abundance were largely correlated to the feedstocks of the digesters, while little difference was seen between the granular and the liquid fractions of each digester or between the two digesters of the TPAD system. Cluster-specific qPCR analysis revealed major impact of feedstocks and fractions on the abundance of pct genes. Readily fermentable substrates such as sugar- or starch-rich feedstocks selected for pct genes (Cluster I) related to Syntrophobacter, while manure feedstock selected for pct clusters related to pct of Clostridium spp. These results suggest that propionate metabolism can be affected by feedstocks and partition differently between solid and liquid phases in digesters. The PCR assays developed in this study may serve as a tool to investigate propionate-oxidizing bacteria in anaerobic digesters and other anaerobic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bitton G (2005) Wastewater microbiology, 3rd edn. Wiley, New York

    Book  Google Scholar 

  2. Speece RE, Boonyakitsombut S, Kim M, Azbar N, Ursillo P (2006) Overview of anaerobic treatment: thermophilic and propionate implications. Water Environ Res 78:460–473

    Article  PubMed  CAS  Google Scholar 

  3. Barredo MS, Evison LM (1991) Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl Environ Microbiol 57:1764–1769

    PubMed  CAS  Google Scholar 

  4. McInerney MJ, Rohlin L, Mouttaki H et al (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci 104:7600–7605

    Article  PubMed  Google Scholar 

  5. Sieber JR, Sims DR, Han C et al (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301

    PubMed  CAS  Google Scholar 

  6. Kosaka T, Uchiyama T, Ishii S, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188:202–210

    Article  PubMed  CAS  Google Scholar 

  7. McMahon KD, Zheng D, Stams AJ, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87:823–834

    Article  PubMed  CAS  Google Scholar 

  8. Chouari R, Paslier DL, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115

    Article  PubMed  CAS  Google Scholar 

  9. Roest K, Heilig HG, Smidt H, de Vos WM, Stams AJ, Akkermans AD (2005) Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28:175–185

    Article  PubMed  CAS  Google Scholar 

  10. Shin SG, Lee S, Lee C, Hwang K, Hwang S (2010) Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol 101:9461–9470

    Article  PubMed  CAS  Google Scholar 

  11. Harmsen HJM, Kengen HMP, Akkermans ADL, Stams AJM, de Vos WM (1996) Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl Environ Microbiol 62:1656–1663

    PubMed  CAS  Google Scholar 

  12. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    PubMed  CAS  Google Scholar 

  13. Shimada T, Li X, Zilles JL, Morgenroth E, Raskin L (2011) Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor. Biotechnol Bioeng 108:296–305

    Article  PubMed  CAS  Google Scholar 

  14. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1168

    Article  PubMed  CAS  Google Scholar 

  15. Lueders T, Chin KJ, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204

    Article  PubMed  CAS  Google Scholar 

  16. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol 148:3521–3530

    CAS  Google Scholar 

  17. Leaphart AB, Lovell CR (2001) Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67:1392–1395

    Article  PubMed  CAS  Google Scholar 

  18. Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M, McSweeney CS (2010) Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 76:7785–7795

    Article  PubMed  CAS  Google Scholar 

  19. Houwen FP, Plokker J, Stams AJM, Zehnder AJB (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55

    Article  CAS  Google Scholar 

  20. Plugge CM, Dijkema C, Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium grown on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76

    Article  CAS  Google Scholar 

  21. de Bok FA, Stams AJ, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804

    Article  PubMed  Google Scholar 

  22. Nelson MC, Morrison M, Schanbacher F, Yu Z (2012) Shifts in microbial community structure of granular and liquid biomass in response to changes to infeed and digester design in anaerobic digesters receiving food-processing wastes. Bioresour Technol 107:135–143

    Article  PubMed  CAS  Google Scholar 

  23. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808–812

    PubMed  CAS  Google Scholar 

  24. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  25. Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763–3766

    Article  PubMed  CAS  Google Scholar 

  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  27. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  28. Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  29. Nye TMW (2008) Trees of trees: an approach to comparing multiple alternative phylogenies. Syst Biol 57:785–794

    Article  PubMed  Google Scholar 

  30. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  31. Wang L, Oda Y, Grewal S, Morrison M, Michel FC Jr, Yu Z (2012) Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. Microb Ecol 63:32–40

    Article  PubMed  CAS  Google Scholar 

  32. Westerholm M, Roos S, Schnurer A (2011) Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst Appl Microbiol 34:260–266

    Article  PubMed  CAS  Google Scholar 

  33. Rangarajan ES, Li Y, Ajamian E, Iannuzzi P, Kernaghan SD, Fraser ME, Cygler M, Matte A (2005) Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases. J Biol Chem 280:42919–42928

    Article  PubMed  CAS  Google Scholar 

  34. Tielens AG, van Grinsven KW, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40:387–397

    Article  PubMed  CAS  Google Scholar 

  35. Lindenkamp N, Schürmann M, Steinbüchel A (2012) A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4624-9

    PubMed  Google Scholar 

  36. Harmsen HJM, van Kuijk BLM, Plugge CM, Akkermans AD, de Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  PubMed  CAS  Google Scholar 

  37. Lovell CR, Leaphart AB (2005) Community-level analysis: key genes of CO2-reductive acetogenesis. Methods Enzymol 397:454–469

    Article  PubMed  CAS  Google Scholar 

  38. Henderson G, Naylor GE, Leahy SC, Janssen PH (2010) Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 76:2058–2066

    Article  PubMed  CAS  Google Scholar 

  39. Zellner G, Neudörfer F (1995) Stability and metabolic versatility of a propionate-degrading biofilm operating in an anaerobic fluidized bed reactor. J Ferment Bioeng 80:389–393

    Article  CAS  Google Scholar 

  40. Chauhan A, Ogram A (2006) Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 72:2400–2406

    Article  PubMed  CAS  Google Scholar 

  41. Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2008) Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl Environ Microbiol 74:3610–3614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Michael Nelson and Wen Lv for providing some of the DNA samples analyzed in this study. We thank Dr. Normand St-Pierre for his advice on the statistical analysis. This study was partially supported by a Department of Energy (DOE) grant (DE-FG36-05GO85010) awarded to Z.Y.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YF., Wei, S. & Yu, Z. Feedstocks Affect the Diversity and Distribution of Propionate CoA-Transferase Genes (pct) in Anaerobic Digesters. Microb Ecol 66, 351–362 (2013). https://doi.org/10.1007/s00248-013-0234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0234-z

Keywords

Navigation