Skip to main content
Log in

Revised Systematics of Holospora-Like Bacteria and Characterization of “Candidatus Gortzia infectiva”, a Novel Macronuclear Symbiont of Paramecium jenningsi

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The genus Holospora (Rickettsiales) includes highly infectious nuclear symbionts of the ciliate Paramecium with unique morphology and life cycle. To date, nine species have been described, but a molecular characterization is lacking for most of them. In this study, we have characterized a novel Holospora-like bacterium (HLB) living in the macronuclei of a Paramecium jenningsi population. This bacterium was morphologically and ultrastructurally investigated in detail, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and developed a specific probe for fluorescence in situ hybridization experiments. A new taxon, “Candidatus Gortzia infectiva”, was established for this HLB according to its unique characteristics and the relatively low DNA sequence similarities shared with other bacteria. The phylogeny of the order Rickettsiales based on 16S rRNA gene sequences has been inferred, adding to the available data the sequence of the novel bacterium and those of two Holospora species (Holospora obtusa and Holospora undulata) characterized for the purpose. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and showed a possible pattern of evolution for some of their features. We suggested to classify inside the family Holosporaceae only HLBs, excluding other more distantly related and phenotypically different Paramecium endosymbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Eschbach E, Pfannkuchen M, Schweikert M, Drutschmann D, Brümmer F, Fokin SI, Ludwig W, Görtz HD (2009) “Candidatus Paraholospora nucleivisitans”, an intracellular bacterium in Paramecium sexaurelia shuttles between the cytoplasm and the nucleus of its host. Syst Appl Microbiol 32:490–500

    Article  CAS  PubMed  Google Scholar 

  2. Ferrantini F, Fokin SI, Modeo L, Andreoli I, Dini F, Görtz HD, Verni F, Petroni G (2009) “Candidatus Cryptoprodotis polytropus”, a novel Rickettsia-like organism in the ciliated protist Pseudomicrothorax dubius (Ciliophora, Nassophorea). J Eukaryot Microbiol 56:119–129

    Article  CAS  PubMed  Google Scholar 

  3. Fokin SI (2012) Frequency and biodiversity of symbionts in representatives of the main classes of Ciliophora. Eur J Protistol 48:138–148

    Article  PubMed  Google Scholar 

  4. Irbis C, Ushida K (2004) Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 50:203–212

    Article  CAS  PubMed  Google Scholar 

  5. Petroni G, Spring S, Schleifer KH, Verni F, Rosati G (2000) Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Natl Acad Sci U S A 97:1813–1817

    Article  CAS  PubMed  Google Scholar 

  6. Rinke C, Schmitz-Esser S, Loy A, Horn M, Wagner M, Bright M (2009) High genetic similarity between two geographically distinct strains of the sulfur-oxidising symbiont “Candidatus Thiobios zoothamnicoli”. FEMS Microbiol Ecol 67:229–241

    Article  CAS  PubMed  Google Scholar 

  7. Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnár DA, Vanura K, Wagner M, Horn M, Ott JA, Bright M (2006) “Candidatus Thiobios zoothamnicoli”, an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 72:2014–2021

    Article  CAS  PubMed  Google Scholar 

  8. Schrallhammer M, Fokin SI, Schleifer KH, Petroni G (2006) Molecular characterization of the obligate endosymbiont “Caedibacter macronucleorum” Fokin and Görtz, 1993 and of its host Paramecium duboscqui strain Ku4-8. J Eukaryot Microbiol 53:499–506

    Article  CAS  PubMed  Google Scholar 

  9. Schrallhammer M, Schweikert M, Vallesi A, Verni F, Petroni G (2011) Detection of a novel subspecies of Francisella noatunensis as endosymbiont of the ciliate Euplotes raikovi. Microb Ecol 61:455–464

    Article  PubMed  Google Scholar 

  10. Shinzato N, Watanabe I, Meng XY, Sekiguchi Y, Tamaki H, Matsui T, Kamagata Y (2007) Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol 54:627–636

    Article  PubMed  Google Scholar 

  11. Sun HY, Noe J, Barber J, Coyne RS, Cassidy-Hanley D, Clark TG, Findly RC, Dickerson HW (2009) Endosymbiotic bacteria in the parasitic ciliate Ichthyophthirius multifiliis. Appl Environ Microbiol 75:7445–7452

    Article  CAS  PubMed  Google Scholar 

  12. Vannini C, Ferrantini F, Ristori A, Verni F, Petroni G (2012) Betaproteobacterial symbionts of the ciliate Euplotes: origin and tangled evolutionary path of an obligate microbial association. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02760.x

  13. Vannini C, Ferrantini F, Schleifer KH, Ludwig W, Verni F, Petroni G (2010) “Candidatus Anadelfobacter veles” and “Candidatus Cyrtobacter comes”, two new Rickettsiales species hosted by the protist ciliate Euplotes harpa (Ciliophora, Spirotrichea). Appl Environ Microbiol 76:4047–4054

    Article  CAS  PubMed  Google Scholar 

  14. Vannini C, Petroni G, Verni F, Rosati G (2005) A bacterium belonging to the Rickettsiaceae family inhabits the cytoplasm of the marine ciliate Diophrys appendiculata (Ciliophora, Hypotrichia). Microb Ecol 49:434–442

    Article  CAS  PubMed  Google Scholar 

  15. Vannini C, Rosati G, Verni F, Petroni G (2004) Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of “Candidatus Devosia euplotis”. Int J Syst Evol Microbiol 54:1151–1156

    Article  CAS  PubMed  Google Scholar 

  16. Fokin SI (2004) Bacterial endocytobionts of Ciliophora and their interactions with the host cell. Int Rev Cytol 236:181–249

    Article  PubMed  Google Scholar 

  17. Görtz HD (1996) Symbiosis in ciliates. In: Hausmann K, Bradbury PS (eds) Ciliates. Cells as organisms. Fisher, Stuttgart, pp 441–462

    Google Scholar 

  18. Görtz HD (2006) Symbiotic associations between ciliates and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 1, 3rd edn. Springer, New York, pp 364–402

    Chapter  Google Scholar 

  19. Görtz HD, Fokin SI (2009) Diversity of endosymbiotic bacteria in Paramecium. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 131–160

    Chapter  Google Scholar 

  20. Vannini C, Petroni G, Schena A, Verni F, Rosati G (2003) Well-established mutualistic associations between ciliates and prokaryotes might be more widespread and diversified than so far supposed. Eur J Protistol 39:481–485

    Article  Google Scholar 

  21. Duncan AB, Fellous S, Kaltz O (2011) Temporal variation in temperature determines disease spread and maintenance in Paramecium microcosm populations. Proc R Soc B 278:3412–3420

    Article  PubMed  Google Scholar 

  22. Fellous S, Quillery E, Duncan AB, Kaltz O (2011) Parasitic infection reduces dispersal of ciliate host. Biol Lett 7:327–329

    Article  PubMed  Google Scholar 

  23. Fels D, Kaltz O (2006) Temperature-dependent transmission and latency of Holospora undulata, a micronucleus-specific parasite of the ciliate Paramecium caudatum. Proc R Soc B 273:1031–1038

    Article  PubMed  Google Scholar 

  24. Kusch J, Czubatinsky L, Wegmann S, Hübner M, Alter M, Albrecht P (2002) Competitive advantages of Caedibacter-infected paramecia. Protist 153:47–58

    Article  PubMed  Google Scholar 

  25. Vannini C, Lucchesi S, Rosati G (2007) Polynucleobacter: symbiotic bacteria in ciliates compensate for a genetic disorder in glycogenolysis. Symbiosis 44:85–91

    Google Scholar 

  26. Vannini C, Pöckl M, Petroni G, Wu QL, Lang E, Stackebrandt E, Schrallhammer M, Richardson PM, Hahn MW (2007) Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 9:347–359

    Article  CAS  PubMed  Google Scholar 

  27. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  28. Amann RI, Springer N, Ludwig W, Görtz HD, Schleifer KH (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164

    Article  CAS  PubMed  Google Scholar 

  29. Fokin SI, Görtz HD (2009) Diversity of Holospora bacteria in Paramecium and their characterization. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 161–199

    Chapter  Google Scholar 

  30. Görtz HD, Schmidt HJ (2005) Holosporaceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol II, part C. Springer, New York, pp 146–160

    Google Scholar 

  31. Gromov BV, Ossipov DV (1981) Holospora (ex Hafkine 1890) nom. rev., a genus of bacteria inhabiting the nuclei of paramecia. Int J Syst Bacteriol 31:348–352

    Article  Google Scholar 

  32. Hafkine MW (1890) Maladies infectieuses des paramécies. Ann Inst Pasteur Paris 4:363–379

    Google Scholar 

  33. Preer JR, Preer LB (1982) Revival of names of protozoan endosymbionts and proposal of Holospora caryophila nom. nov. Int J Syst Bacteriol 32:140–141

    Article  Google Scholar 

  34. Fokin SI (2000) Host specificity of Holospora and its relationships with Paramecium phylogeny. Jpn J Protozool 33:94

    Google Scholar 

  35. Hori M, Fujii K, Fujishima M (2008) Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 55:515–521

    Article  CAS  PubMed  Google Scholar 

  36. Hori M, Fujishima M (2003) The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 50:293–298

    Article  CAS  PubMed  Google Scholar 

  37. Smurov AO, Fokin SI (1998) Resistance of some stocks of ciliate Paramecium caudatum infected with endonuclear bacteria Holospora against salinity impact. Proc Zool Inst RAS 276:175–178

    Google Scholar 

  38. Fujishima M, Hoshide K (1988) Light and electron microscopic observations of Holospora obtusa: a macronucleus-specific bacterium of the ciliate Paramecium caudatum. Zool Sci 5:791–799

    Google Scholar 

  39. Fujishima M, Sawabe H, Iwatsuki K (1990) Scanning electron microscopic observations of differentiation from the reproductive short form to the infectious long form of Holospora obtusa. J Protozool 37:123–128

    Google Scholar 

  40. Görtz HD, Ahlers N, Robenek H (1989) Ultrastructure of the infectious and reproductive forms of Holospora obtusa, a bacterium infecting the macronucleus of Paramecium caudatum. J Gen Microbiol 135:3079–3085

    Google Scholar 

  41. Görtz HD, Dieckmann J (1980) Life cycle and infectivity of Holospora elegans Haffkine, a micronucleus-specific symbiont of Paramecium caudatum (Ehrenberg). Protistologica 16:591–603

    Google Scholar 

  42. Dohra H, Fujishima M (1999) Cell structure of the infectious form of Holospora, an endonuclear symbiotic bacterium of the ciliate Paramecium. Zool Sci 16:93–98

    Article  Google Scholar 

  43. Iwatani K, Dohra H, Lang BF, Burger G, Hori M, Fujishima M (2005) Translocation of an 89-kDa periplasmic protein is associated with Holospora infection. Biochem Biophys Res Commun 337:1198–1205

    Article  CAS  PubMed  Google Scholar 

  44. Fujishima M (2009) Infection and maintenance of Holospora species in Paramecium caudatum. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 201–225

    Chapter  Google Scholar 

  45. Wiemann M, Görtz HD (1989) Release of the endonucleobiotic bacterium Holospora elegans from its host cell Paramecium caudatum. Eur J Protistol 25:100–108

    Article  CAS  PubMed  Google Scholar 

  46. Fujishima M, Kawai M (1997) Acidification in digestive vacuoles is an early event required for Holospora infection of Paramecium nucleus. In: Achenk HEA, Herrmann RG, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and symbiosis. Springer, Berlin, pp 367–370

    Chapter  Google Scholar 

  47. Sabaneyeva EV, Derkacheva ME, Benken KA, Fokin SI, Vainio S, Skovorodkin IN (2009) Actin-based mechanism of Holospora obtusa trafficking in Paramecium caudatum. Protist 160:205–219

    Article  CAS  PubMed  Google Scholar 

  48. Sabaneyeva EV, Fokin SI, Gavrilova EV, Kornilova ES (2005) Nocodazole inhibits macronuclear infection with Holospora obtusa in Paramecium caudatum. Protoplasma 226:147–153

    Article  CAS  PubMed  Google Scholar 

  49. Fokin SI, Brigge T, Brenner J, Görtz HD (1996) Holospora species infecting the nuclei of Paramecium appear to belong into two groups of bacteria. Eur J Protistol 32:19–24

    Article  Google Scholar 

  50. Fokin SI, Sabaneyeva EV (1997) Release of endonucleobiotic bacteria Holospora bacillata and Holospora curvata from the macronucleus of their host cells Paramecium woodruffi and Paramecium calkinsi. Endocyt Cell Res 12:49–55

    Google Scholar 

  51. Vakkerov-Kouzova ND, Rautian MS (2011) Obtaining and characterization of “Holospora curviuscula” and Holospora obtusa, bacterial symbionts of the macronuclei of Paramecium bursaria and Paramecium caudatum. Microbiology 80:728–732

    Article  CAS  Google Scholar 

  52. Schrallhammer M, Schweikert M (2009) The killer effect of Paramecium and its causative agents. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 227–246

    Chapter  Google Scholar 

  53. Birtles RJ, Rowbotham TJ, Michel R, Pitcher DG, Lascola B, Alexiou-Daniel S, Raoult D (2000) “Candidatus Odyssella thessalonicensis” gen. nov., sp. nov., an obligate intracellular parasite of Acanthamoeba species. Int J Syst Evol Microbiol 50:63–72

    Article  CAS  PubMed  Google Scholar 

  54. Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol 1:357–367

    Article  CAS  PubMed  Google Scholar 

  55. Przyboś E, Fokin S, Stoeck T, Schmidt HJ (1999) Occurrence and ecology of Paramecium jenningsi strains. Folia Biol–Krakow 47:53–59

    Google Scholar 

  56. Wichterman R (1953) The biology of Paramecium. McGraw-Hill, New York, p 527

    Google Scholar 

  57. Skovorodkin IN (1990) A device for immobilizing biological objects in the light microscope studies. Tsitologiya 32:301–302, In Russian with English summary

    CAS  Google Scholar 

  58. Fokin SI (1997) Morphological diversity of the micronuclei in Paramecium. Arch Protistenkd 148:375–387

    Article  Google Scholar 

  59. Fokin SI (2010/2011) Paramecium genus: biodiversity, some morphological features and the key to the main morphospecies discrimination. Protistology 6:227–235

    Google Scholar 

  60. Preer LB (1969) Alpha, an infectious macronuclear symbiont of Paramecium aurelia. J Protozool 16:570–578

    CAS  PubMed  Google Scholar 

  61. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  CAS  PubMed  Google Scholar 

  62. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  63. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  Google Scholar 

  64. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  65. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  66. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  CAS  PubMed  Google Scholar 

  67. Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  68. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  69. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  70. Miyake A (1981) Cell–cell interaction by gamones in Blepharisma. In: O’Day DH, Horgen PA (eds) Sexual interactions in eukaryotic microbes. Academic, New York, pp 95–129

    Google Scholar 

  71. Manz W, Amann RI, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  72. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  73. Loy A, Maixner F, Wagner M, Horn M (2007) probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35:D800–D804

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A (2004) “Candidatus Hepatincola porcellionum” gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol 181:299–304

    Article  CAS  PubMed  Google Scholar 

  75. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    Article  CAS  PubMed  Google Scholar 

  76. Murray RGE, Schleifer KH (1994) A proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44:174–176

    Article  CAS  PubMed  Google Scholar 

  77. Murray RGE, Stackebrandt E (1995) Implementation of the provisional status Candidatus for incompletely described prokaryotes. Int J Syst Bacteriol 45:186–187

    Article  CAS  PubMed  Google Scholar 

  78. Borchsenius ON, Skoblo II, Ossipov DV (1983) Holospora curviuscula—a new species of macronuclear symbiotic bacteria of Paramecium bursaria. Tsitologiya 25:91–97, In Russian with English summary

    Google Scholar 

  79. Landis WG (1981) The ecology, role of the killer trait, and interactions of five species of Paramecium aurelia complex inhabiting the littoral zone. Can J Zool 59:1734–1743

    Article  Google Scholar 

  80. Landis WG (1987) Factors determining the frequency of the killer trait within populations of the Paramecium aurelia complex. Genetics 115:197–205

    CAS  PubMed  Google Scholar 

  81. Preer JR, Stark PS (1953) Cytological observations on the cytoplasmic factor “kappa” in Paramecium aurelia. Exp Cell Res 5:478–491

    Article  CAS  PubMed  Google Scholar 

  82. Schrallhammer M, Galati S, Altenbuchner J, Schweikert M, Görtz HD, Petroni G (2012) Tracing the role of R-bodies in the killer trait: absence of toxicity of R-body producing recombinant E. coli on paramecia. Eur J Protistol. doi:10.1016/j.ejop.2012.01.008

  83. Preer JR, Preer LB, Jurand A (1974) Kappa and other endosymbionts in Paramecium aurelia. Bacteriol Rev 38:113–163

    CAS  PubMed  Google Scholar 

  84. Kusch J, Stremmel M, Breiner HW, Adams V, Schweikert M, Schmidt HJ (2000) The toxic symbiont Caedibacter caryophila in the cytoplasm of Paramecium novaurelia. Microb Ecol 40:330–335

    CAS  PubMed  Google Scholar 

  85. Beier CL, Horn M, Michel R, Schweikert M, Görtz HD, Wagner M (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68:6043–6050

    Article  CAS  PubMed  Google Scholar 

  86. Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz HD, Schleifer KH (1993) Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sci U S A 90:9892–9895

    Article  CAS  PubMed  Google Scholar 

  87. Jones RT, McCormick KF, Martin AP (2008) Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns. Appl Environ Microbiol 74:1667–1670

    Article  CAS  PubMed  Google Scholar 

  88. Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  PubMed  Google Scholar 

  89. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Kumar Y, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  90. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147

    Google Scholar 

  91. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. T. Fokina for the lucky sampling in Thailand, Prof. E. Przyboś for the P. quadecaurelia identification, Prof. O. Kaltz for providing the P. caudatum cultures and the anonymous reviewers who gave very useful advices, improving the quality of this paper. S. Gabrielli is gratefully acknowledged for technical assistance in graphic artwork. This work was supported by PRIN fellowship (protocol 2008TRZSXF_002) from the Italian Research Ministry (MIUR), the Volkswagen foundation (project number: 84816), the European Commission FP7-PEOPLE-2009-IRSES project CINAR PATHOBACTER (247658) and the support actions for international academic cooperation of Pisa University (years 2011/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Petroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boscaro, V., Fokin, S.I., Schrallhammer, M. et al. Revised Systematics of Holospora-Like Bacteria and Characterization of “Candidatus Gortzia infectiva”, a Novel Macronuclear Symbiont of Paramecium jenningsi . Microb Ecol 65, 255–267 (2013). https://doi.org/10.1007/s00248-012-0110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0110-2

Keywords

Navigation