Skip to main content
Log in

Biochemical Composition and Changes of Extracellular Polysaccharides (ECPS) Produced during Microphytobenthic Biofilm Development (Marennes-Oléron, France)

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The main goal of this work was to study the dynamics and biochemical composition of extracellular polysaccharides (ECPS), a fraction of the extracellular polymeric substances (EPS) produced during the development of a microphytobenthic biofilm in a European intertidal mudflat (Marennes-Oléron Bay, France) during winter. Microphytobenthic biomass was surveyed during four consecutive emersion periods to confirm the biofilm growth. Bacteria abundance was also checked considering the importance of heterotrophic bacteria observed by various authors in the dynamics of EPS. Various colorimetric assays, coupled to biochemical chromatographic analysis, were used to characterize the three main fractions of extracted EPS: colloidal, bound, and residual. The monosaccharide distribution of colloidal ECPS highlighted their role of carbon source for bacteria (>50% of glucose) even if no increase of colloidal carbohydrate amounts was observed during the tidal exposure. Bound ECPS were composed of deoxy or specific sugars (30% rhamnose) and uronic acids (18% galacturonic acid). Their levels and dynamics could be correlated to the development of the microphytobenthic biofilm, enhancing the stabilization of the sediment or increasing binding forces accordingly. Residual fractions, containing refractory bound ECPS and other internal polymeric substances, were composed of various carbohydrates. The high ratio of glucose in these fractions (18% to 43%) was interesting, as it was once attributed to colloidal sugars due to poor extraction procedures. Finally, the presence of inositol (15%) was significant since no author has highlighted it before, knowing that inositol is a major growth factor for heterotrophic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abdullahi AS, Underwood GJC, Gretz MR (2006) Extracellular matrix assembly in diatoms (Bacillariophyceae). V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. J Phycol 42:363–378

    Article  Google Scholar 

  2. Bellinger BJ, Abdullahi AS, Gretz MR, Underwood GJC (2005) Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms. Aquat Microb Ecol 38:169–180

    Article  Google Scholar 

  3. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  PubMed  CAS  Google Scholar 

  4. Chiovitti A, Higgins MJ, Harper RE, Wetherbee R (2003) The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). J Phycol 39:543–554

    Article  CAS  Google Scholar 

  5. Chiovitti A, Bacic A, Burke J, Wetherbee R (2003) Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatom Craspedostauros australis (bacillariphyceae). Eur J Phycol 38:351–360

    Article  CAS  Google Scholar 

  6. Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Part I. Comparison of the efficiency of eight EPS extraction methods. Enzym Microb Technol 38:237–245

    Article  CAS  Google Scholar 

  7. Craigie JS, Wen ZC, van der Meer JP (1984) Interspecific, intraspecific and nutrionally-determinated variations in the composition of agars from Gracilaria spp. Bot Mar 27:55–61

    Article  CAS  Google Scholar 

  8. de Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat. Mar Ecol Prog Ser 218:33–44

    Article  Google Scholar 

  9. Denkhaus E, Meisen S, Telgheder U, Wingender J (2007) Chemical and physical methods for characterization of biofilms. Mikrochim Acta 158:1–27

    Article  CAS  Google Scholar 

  10. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  11. Falciatore A, D'Alcala MR, Croot P, Bowler C (2000) Perception of environmental signals by a marine diatom. Science 288:2363–2366

    Article  PubMed  CAS  Google Scholar 

  12. Filisetti-Cozzi TM, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162

    Article  PubMed  CAS  Google Scholar 

  13. Flemming HC, Wingender J (2002) Extracellular polymeric substances: structure, ecological functions, technical relevance. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1223–1231

    Google Scholar 

  14. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  PubMed  CAS  Google Scholar 

  15. Giroldo D, Vieira AAH, Paulsen BS (2003) Relative increase of deoxy sugars during microbial degradation of an extracellular polysaccharide released by a tropical freshwater Thalassiosira sp. (Bacillariophyceae). J Phycol 39:1109–1115

    Article  CAS  Google Scholar 

  16. Guarini JM, Blanchard GF, Gros P, Gouleau D, Bacher C (2000) Dynamic model of the short-term variability of microphytobentic biomass on temperate intertidal mudflats. Mar Ecol Prog Ser 195:291–303

    Article  Google Scholar 

  17. Hanlon ARM, Bellinger B, Haynes K, Xiao G, Hofmann TA, Gretz MR, Ball AS, Osborn M, Underwood GJC (2006) Dynamics of extracellular polymeric substances (EPS) production and loss in an estuarine, diatom-dominated, microbial biofilm over a tidal emersion-immersion period. Limnol Oceanogr 51:79–93

    Article  CAS  Google Scholar 

  18. Haubois AG, Sylvestre F, Guarini JM, Richard P, Blanchard GF (2005) Spatio-temporal structure of the epipelic diatom assemblage from an intertidal mudflat in Marennes-Oléron Bay, France. Estuar Coast Shelf Sci 64:385–394

    Article  Google Scholar 

  19. Herlory O (2005) Etude du biofilm microalgal des vasières intertidales: dynamique spatio-temporelle à micro-échelle et performances photosynthétiques. Ph.D. thesis. University of La Rochelle, France

  20. Hieber V, Distler J, Myerowitz R, Schmickel RD, Jourdian GW (1976) The role of glycosidically bound mannose in the assimilation of β-galactosidase by generalized gangliosidosis fibroblasts. Biochem Biophys Res Commun 73:710–717

    Article  PubMed  CAS  Google Scholar 

  21. Hofmann T, Hanlon ARM, Taylor JD, Ball AS, Osborn AM, Underwood GJC (2009) Dynamics and compositional changes in extracellular carbohydrates in estuarine sediments during degradation. Mar Ecol Prog Ser 379:45–58

    Article  CAS  Google Scholar 

  22. Jaques LB, Ballieux RE, Dietrich CP, Kavanagh LW (1968) A microelectrophoresis method for heparin. Can J Physiol Pharmacol 46:351–360

    Article  PubMed  CAS  Google Scholar 

  23. Lorenzen S (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res 13:223–227

    Google Scholar 

  24. Mulloy B (2005) The specificity of interactions between proteins and sulfated polysaccharides. An Acad Bras Cienc 77:651–664

    Article  PubMed  CAS  Google Scholar 

  25. Orvain F, Galois R, Barnard C, Sylvestre A, Blanchard G, Sauriau PG (2003) Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm. Microb Ecol 45:237–251

    Article  PubMed  CAS  Google Scholar 

  26. Paterson DM, Black KS (1999) Water flow, sediment dynamics and benthic biology. Adv Ecol Res 29:155–193

    Article  Google Scholar 

  27. Patil JS, Anil AC (2005) Biofilm diatom community structure: influence of temporal substratum variability. Biofouling 21:189–206

    Article  PubMed  CAS  Google Scholar 

  28. Perkins RG, Honeywill C, Consalvey M, Austin HA, Tolhurst TJ, Paterson DM (2003) Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content. Cont Shelf Res 23:575–586

    Article  Google Scholar 

  29. Pierre G, Graber M, Orvain F, Dupuy C, Maugard T (2010) Biochemical characterization of extracellular polymeric substances extracted from an intertidal mudflat using a cation exchange resin. Biochem Syst Ecol 38:917–923

    Article  CAS  Google Scholar 

  30. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  31. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  32. Smith DJ, Underwood GJC (1998) Exopolymers production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591

    Article  CAS  Google Scholar 

  33. Spears BM, Saunders JE, Davidson I, Paterson DM (2008) Microalgal sediment biostabilisation along a salinity gradient in the Eden Estuary, Scotland: unraveling a paradox. Mar Freshw Res 59:313–321

    Article  CAS  Google Scholar 

  34. Staats N, de Winder B, Stal LJ, Mur LR (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca clostrerium and Navicula salinarum. Eur J Phycol 34:161–169

    Article  Google Scholar 

  35. Stal LJ, Défarge C (2005) Structure and dynamics of exopolymers in an intertidal diatom biofilm. Geomicrobiol J 22:341–352

    Article  CAS  Google Scholar 

  36. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  37. Takahashi E, Ledauphin J, Goux D, Orvain F (2009) Optimizing extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods. Mar Freshw Res 60:1201–1210

    Article  CAS  Google Scholar 

  38. Taylor IS, Paterson DM, Mehlert A (1999) The quantitative variability and monosaccharide composition of sediment carbohydrates associated with intertidal diatom assemblages. Biogeochemical 45:303–327

    CAS  Google Scholar 

  39. Underwood GJC, Boulcott M, Raines CA (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304

    Article  CAS  Google Scholar 

  40. Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:184–240

    Article  Google Scholar 

  41. Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol Oceanogr 40:1243–1253

    Article  CAS  Google Scholar 

  42. Wustman BA, Gretz MR, Hoagland KD (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae). I. A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes and other diatoms. Plant Physiol 113:1059–1069

    PubMed  CAS  Google Scholar 

  43. Zhou J, Mopper K, Passow U (1998) The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol Oceanogr 43:1860–1871

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Conseil Général of Charentes-Maritime and the Centre National de la Recherche Scientifique. The field sampling was supported by the French ANR (National Research Agency) through the VASIREMI project “Trophic significance of microbial biofilms in tidal flats” (contract ANR-06-BLAN-0393-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Maugard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, G., Graber, M., Rafiliposon, B.A. et al. Biochemical Composition and Changes of Extracellular Polysaccharides (ECPS) Produced during Microphytobenthic Biofilm Development (Marennes-Oléron, France). Microb Ecol 63, 157–169 (2012). https://doi.org/10.1007/s00248-011-9959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9959-8

Keywords

Navigation