Skip to main content

Advertisement

Log in

Genomic Analysis Reveals Multiple [FeFe] Hydrogenases and Hydrogen Sensors Encoded by Treponemes from the H2-Rich Termite Gut

  • Genes and Genomes
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We have completed a bioinformatic analysis of the hydrogenases encoded in the genomes of three termite gut treponeme isolates: hydrogenotrophic, homoacetogenic Treponema primitia strains ZAS-1 and ZAS-2, and the hydrogen-producing, sugar-fermenting Treponema azotonutricium ZAS-9. H2 is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The spirochetes encoded 4, 8, and 5 [FeFe] hydrogenase-like proteins, identified by their H domains, respectively, but no other recognizable hydrogenases. The [FeFe] hydrogenases represented many sequence families previously proposed in an analysis of termite gut metagenomic data. Each strain encoded both putative [FeFe] hydrogenase enzymes and evolutionarily related hydrogen sensor/transducer proteins likely involved in phosphorelay or methylation pathways, and possibly even chemotaxis. A new family of [FeFe] hydrogenases (FDH-Linked) is proposed that may form a multimeric complex with formate dehydrogenase to provide reducing equivalents for reductive acetogenesis in T. primitia. The many and diverse [FeFe] hydrogenase-like proteins encoded within the sequenced genomes of the termite gut treponemes has enabled the discovery of a putative new class of [FeFe] hydrogenase proteins potentially involved in acetogenesis and furthered present understanding of many families, including sensory, of H domain proteins beyond what was possible through the use of fragmentary termite gut metagenome sequence data alone, from which they were initially defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  2. Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Boston, pp 409–435

    Google Scholar 

  3. Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    Article  PubMed  CAS  Google Scholar 

  4. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic–anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Odelson DA, Breznak JA (1985) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Odelson DA, Breznak JA (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Müller N, Worm P, Schink B, Alfons JMS, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499

    Article  PubMed  CAS  Google Scholar 

  9. Worm P, Fermoso FG, Stams AJM, Lens PNL, Plugge CM (2011) Transcription of fdh and hyd in Syntrophobacter sppp. and Methanospirillum spp. in anaerobic granular sludge deprived of molybdenum, tungsten and selenium. Environ Microbiol 13:1228–1235

    Article  PubMed  CAS  Google Scholar 

  10. Worm P, Stams AJM, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase encoding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157:280–289

    Article  PubMed  CAS  Google Scholar 

  11. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  PubMed  CAS  Google Scholar 

  12. Yamin MA, Trager W (1979) Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. J Gen Microbiol 113:417–420

    Article  CAS  Google Scholar 

  13. Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59

    Article  PubMed  CAS  Google Scholar 

  14. Inoue J-I, Saita K, Kudo T, Ui S, Ohkuma M (2007) Hydrogen production by termite gut protists: characterization of iron hydrogenases of Parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6:1925–1932

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  PubMed  CAS  Google Scholar 

  17. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565

    Article  PubMed  CAS  Google Scholar 

  19. Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327

    Article  PubMed  CAS  Google Scholar 

  20. Schink B, Lupton FS, Zeikus JG (1983) Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments. Appl Environ Microbiol 45:1491–1500

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Sugimoto A, Fujita N (2006) Hydrogen concentrations and stable isotopic composition of methane in bubble gas observed in a natural wetland. Biogeochemistry 81:33–44

    Article  CAS  Google Scholar 

  22. Scranton MI, Novelli PC, Loud PA (1984) The distribution and cycling of hydrogen gas in the waters of two anoxic marine environments. Limnol Oceanogr 29:993–1003

    Article  CAS  Google Scholar 

  23. Smolenski WJ, Robinson JA (1988) In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol Lett 53:95–100

    Article  CAS  Google Scholar 

  24. Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269

    Article  PubMed  CAS  Google Scholar 

  25. Brune A (1998) Termite guts: the world's smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  26. Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  PubMed  CAS  Google Scholar 

  27. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  28. Frey M (2002) Hydrogenases: hydrogen-activating enzymes. ChemBioChem 3:153–160

    Article  PubMed  CAS  Google Scholar 

  29. Vignais PM, Billoud B (2007) Occurence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  PubMed  CAS  Google Scholar 

  30. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  31. Cleveland LR (1923) Correlation between the food and morphology of termites and the presence of intestinal protozoa. Am J Epidemiol 3:444–461

    Google Scholar 

  32. Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci USA 9:424–428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Boston, pp 209–231

    Google Scholar 

  34. Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 1. Springer Science+Business Media, LLC, New York, pp 439–474

    Chapter  Google Scholar 

  35. Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  36. Hungate RE (1939) Experiments on the nutrition of Zootermopsis III: the anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20:230–245

    Article  CAS  Google Scholar 

  37. Hungate RE (1943) Quantitative analysis on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739

    CAS  Google Scholar 

  38. Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    Article  PubMed  CAS  Google Scholar 

  39. Paster BJ, Dewhirst FE (2000) Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol 2:341–344

    PubMed  CAS  Google Scholar 

  40. Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Salmassi TM, Leadbetter JR (2003) Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537

    Article  PubMed  CAS  Google Scholar 

  42. Pester M, Brune A (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8:1261–1270

    Article  PubMed  CAS  Google Scholar 

  43. Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498

    Article  PubMed  CAS  Google Scholar 

  44. Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75–90

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  48. Pietrokovski S, Henikoff JG, Henikoff S (1998) Exploring protein homology with the Blocks server. Trends Genet 14:162–163

    Article  PubMed  CAS  Google Scholar 

  49. Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54

    Article  PubMed  CAS  Google Scholar 

  50. Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084

    Article  PubMed  CAS  Google Scholar 

  51. Leach MR, Zamble DB (2007) Metallocenter assembly of the hydrogenase enzymes. Curr Opin Chem Biol 11:159–165

    Article  PubMed  CAS  Google Scholar 

  52. Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71

    Article  PubMed  CAS  Google Scholar 

  53. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  PubMed  CAS  Google Scholar 

  54. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen I-M, Grechkin Y, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Hugenholtz P, Kyrpides NC (2008) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36:D534–D538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen I-M, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36:D528–D533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218

    Article  PubMed  CAS  Google Scholar 

  58. Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C (2009) Mobyle: a new full web bioinformatics framework. Bioinformatics 25:3005–3011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Mulder N, Apweiler R (2007) InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396:59–70

    Article  PubMed  CAS  Google Scholar 

  60. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS (2005) PSORTb v20: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623

    Article  PubMed  CAS  Google Scholar 

  61. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Verhagen MF, O'Rourke T, Adams MW (1999) The hypothermophylic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta 1412:212–229

    Article  PubMed  CAS  Google Scholar 

  63. Matson EG, Zhang X, Leadbetter JR (2010) Selenium controls transcription of paralogous formate dehydrogenase genes in the termite gut acetogen, Treponema primitia. Environ Microbiol 12:2245–2258

    PubMed  CAS  Google Scholar 

  64. Vu AT, Nguyen NC, Leadbetter JR (2004) Iron reduction in the metal-rich guts of wood-feeding termites. Geobiology 2:239–247

    Article  CAS  Google Scholar 

  65. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  66. Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233:109–122

    Article  PubMed  CAS  Google Scholar 

  67. Malki S, Saimmaime I, de Luca G, Rousset M, Dermoun Z, Belaich J-P (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177:2628–2636

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463

    Article  PubMed  CAS  Google Scholar 

  69. Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int J Syst Evol Microbiol 51:1335–1341

    PubMed  CAS  Google Scholar 

  70. Hatchikian CE, Chaigneau M, Le Gall J (1976) Analysis of gas production by growing culture of three species of sulfate-reducing bacteria. In: Schlegel HG, Gottschalk G, Pfenning N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 109–118

    Google Scholar 

  71. Traoré AS, Hatchikian EC, Belaich JP, Le Gall J (1981) Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol 145:191–199

    PubMed  PubMed Central  Google Scholar 

  72. Schwartz E, Friedrich B (2006) The H2-metabolizing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes, vol 2. Springer Science+Business Media, LLC, pp 496–563

    Chapter  Google Scholar 

  73. Ragsdale SW (2008) Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Graentzdoerffer A, Rauh D, Pich A, Andreesen JR (2003) Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol 179:116–130

    PubMed  CAS  Google Scholar 

  75. Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647

    Article  PubMed  CAS  Google Scholar 

  76. Rosenthal AZ, Matson EG, Eldar A, Leadbetter JR (2011) RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J (in press)

  77. Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  PubMed  CAS  Google Scholar 

  78. Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA (2005) Life in hot carbon monoxide: the complete genome of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1:e65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Shaw AJ, Hogsett DA, Lynd LR (2009) Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 191:6457–6464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Posewitz MC, Mulder DW, Peters JW (2008) New frontiers in hydrogenase structure and biosynthesis. Curr Chem Bio 2:178–199

    CAS  Google Scholar 

  81. Buhrke T, Lenz O, Porthun A, Friedrich B (2004) The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase. Mol Microbiol 51:1677–1689

    Article  PubMed  CAS  Google Scholar 

  82. Rogov VV, Rogova NY, Bernhard F, Koglin A, Löhr F, Dötsch V (2006) A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains. J Mol Biol 364:68–79

    Article  PubMed  CAS  Google Scholar 

  83. Majdalani N, Gottesman S (2006) The Rcs Phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405

    Article  CAS  Google Scholar 

  84. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the NSF (MCB-0523267) and an NSF Graduate Student Research Fellowship (to NRB). The draft shotgun genome sequencing of T. primitia ZAS-1 was performed by Richard White and Stephen Quake at Stanford University, for which we are extremely grateful. We would like to thank our laboratory colleagues for their insightful comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared R. Leadbetter.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Primer sequences used in this study (PDF 288 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballor, N.R., Paulsen, I. & Leadbetter, J.R. Genomic Analysis Reveals Multiple [FeFe] Hydrogenases and Hydrogen Sensors Encoded by Treponemes from the H2-Rich Termite Gut. Microb Ecol 63, 282–294 (2012). https://doi.org/10.1007/s00248-011-9922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9922-8

Keywords

Navigation