Skip to main content
Log in

Autoregulatory Properties of (+)-Thujopsene and Influence of Environmental Conditions on Its Production by Penicillium decumbens

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A Penicillium decumbens strain was collected from a water-damaged building, and the production of microbial volatile organic compounds (MVOCs) was investigated by means of headspace solid-phase microextraction, followed by GC-MS analysis. The strain was characterized by a high production of (+)-thujopsene. The influence of various temperatures, relative humidity (RH) values, substrates, and inoculum concentrations on fungal growth and (+)-thujopsene production was studied. The optimal temperature and relative humidity for P. decumbens growth were 30°C and 100% RH, respectively. In general, the more favourable the incubation parameters were for growth, the faster maximum (+)-thujopsene production was reached. Moreover, the antifungal activity of thujopsene was tested against 16 fungal strains. The growth of five of these fungal strains was negatively affected both by thujopsene alone and when grown in contact with the MVOCs produced by P. decumbens. Following these results and since growth of P. decumbens itself was also inhibited by thujopsene, an autoregulatory function for this compound was proposed. Few data are present in the literature about chemical communication between fungi. The present research could, therefore, contribute to understanding fungal metabolism and behaviour in indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Larsen TO, Frisvad JC (1995) Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res 99(10):1153–1166

    Article  CAS  Google Scholar 

  2. Jeleń HH, Latus-Zietkiewicz D, Wasowicz E, Kaminski E (1997) Trichodiene as a volatile marker for trichothecenes biosynthesis. J Microbiol Methods 31:45–49

    Article  Google Scholar 

  3. Fischer G, Dott W (2003) Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 179:75–82

    CAS  PubMed  Google Scholar 

  4. Kita T, Nishi K, Fujimura M, Abo M, Ohka T, Yasui M, Ogawa H, Minato H, Kurumaya H, Nakao S (2003) A case of hypersensitivity pneumonitis caused by Humicola fuscoatra. Respirology 8:95–98

    Article  PubMed  Google Scholar 

  5. Sen B, Asan A (2009) Fungal flora in indoor and outdoor air of different residential houses in Tekirdag City (Turkey): seasonal distribution and relationship with climatic factors. Environ Monit Assess 151:209–219

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Jin S (2006) Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzyme Microb Technol 39:1430–1432

    Article  CAS  Google Scholar 

  7. Yuan H, Yang J, Chen W (2006) Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization. Fuel 85:1378–1382

    Article  CAS  Google Scholar 

  8. Jimenez A, Borja R, Martin A, Raposo F (2005) Mathematical modelling of aerobic degradation of vinasses with Penicillium decumbens. Process Biochem 40:2805–2811

    Article  CAS  Google Scholar 

  9. Kaufman DD, Blake J (1970) Degradation of atrazine by soil fungi. Soil Biol Biochem 2:73–80

    Article  CAS  Google Scholar 

  10. Radosevich M, Traina SJ, Hao YL, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61:297–302

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosh PK, Philip L (2006) Environmental significance of atrazine in aqueous systems and its removal by biological processes: an overview. Global NEST J 8:159–178

    Google Scholar 

  12. Crozier A, Clifford MN, Ashihara H (1981) Plant secondary metabolites. Occurrence, structure and role in the human diet. Blackwell, Oxford

    Google Scholar 

  13. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  14. Fäldt J, Jonsell M, Nordlander G, Borg-Karlson A (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25:567–590

    Article  Google Scholar 

  15. Hynes J, Müller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57

    Article  CAS  PubMed  Google Scholar 

  16. Barrero A, Quilez Del Moral J, Lara A, Mar Herrador M (2005) Antimicrobial activity of sesquiterpenes from the essential oil of Juniperus thurifera wood. Planta Med 71:67–71

    Article  CAS  PubMed  Google Scholar 

  17. Edrada RA, Wray V, Witte L, Van Ofwegen L, Proksch P (2000) Bioactive terpenes from the soft coral Heteroxenia sp. from Mindoro, Philippines. Zeitschrift für Naturforschung 55:82–86

    CAS  PubMed  Google Scholar 

  18. Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  CAS  PubMed  Google Scholar 

  19. Nakahara T (2009) Antimicrobial agents containing orange peel-derived terpene fractions and skin preparations containing the agents. Jpn Kokai Tokkyo Koho JP 2009114083 A 20090528

  20. Wu C, Chien S, Wang S, Kuo Y, Chang S (2005) Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi. Holzforschung 59(6):620–627

    Article  CAS  Google Scholar 

  21. Kim JL, Elfman L, Mi Y, Wieslander G, Smedje G, Norbaeck D (2007) Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools-associations with asthma and respiratory symptoms in pupils. Indoor Air 17:153–163

    Article  CAS  PubMed  Google Scholar 

  22. Maggi F, Cecchini C, Cresci A, Coman MM, Tirillini B, Sagratini G, Papa F (2009) Chemical composition and antimicrobial activity of the essential oil from Ferula glauca L. (F. communis L. subsp. glauca) growing in Marche (central Italy). Fitoterapia 80:68–72

    Article  CAS  PubMed  Google Scholar 

  23. Adams RP, Li S (2008) The botanical source of Chinese cedarwood oil: Cupressus funebris or Cupressaceae species? J Essent Oil Res 20:235–242

    Article  CAS  Google Scholar 

  24. Srikrishna A, Anebouselvy K (2001) An enantiospecific approach to tricyclic sesquiterpenes mayurone and thujopsenes. J Org Chem 66:7102–7106

    Article  CAS  PubMed  Google Scholar 

  25. Matsuo A, Nakayama N, Nakayama M (1985) Enantiomeric type sesquiterpenoids of the liverwort Marchantia polymorpha. Phytochem 24(4):777–781

    Article  CAS  Google Scholar 

  26. Chen F, Tholl D, D’auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manter DK, Kelsey RG, Karchesy JJ (2007) Antimicrobial activity of extractable conifer heartwood compounds toward Phytophthora ramorum. J Chem Ecol 33(11):2133–2147

    Article  CAS  PubMed  Google Scholar 

  28. Polizzi V, Delmulle B, Adams A, Moretti A, Susca A, Picco AM, Rosseel Y, Kindt TR, Van Bocxlaer J, De Kimpe N, Van Peteghem C, De Saeger S (2009) Fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings. J Environ Monit 11:1849–1858

    Article  CAS  PubMed  Google Scholar 

  29. Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  30. Ellis MB (1976) More dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  31. Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, London

    Google Scholar 

  32. Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  33. Chang JCS (1995) Growth evaluation of fungi (Penicillium and Aspergillus spp.) on ceiling tiles. Atmospheric Environ 29(17):2331–2337

    Article  CAS  Google Scholar 

  34. Pasanen P, Korpi A, Kalliokoski P, Pasanen A (1997) Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ Int 23(4):425–432

    Article  CAS  Google Scholar 

  35. Adams R (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured, Illinois

    Google Scholar 

  36. Demyttenaere JCR, De Pooter HL (1998) Biotransformation of citral and nerol by spores of Penicillium digitatum. Flavour Fragr J 13:173–176

    Article  CAS  Google Scholar 

  37. Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum Conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Börjesson T, Stöllman U, Schnürer J (1992) Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. Appl Environ Microbiol 58:2599–2605

    PubMed  PubMed Central  Google Scholar 

  39. Elke K, Begerow J, Oppermann H, Kramer U, Jermann E, Dunemann L (1999) Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID—a new feasible approach for the detection of an exposure to indoor mould fungi? J Environ Monit 1:445–452

    Article  CAS  PubMed  Google Scholar 

  40. Skaltsa HD, Demetzos C, Lazari D, Sokovic M (2003) Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochemistry 64:743–752

    Article  CAS  PubMed  Google Scholar 

  41. Demyttenaere JCR, Moriña RM, De Kimpe N, Sandra P (2004) Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J Chromatogr A 1027:147–154

    Article  CAS  PubMed  Google Scholar 

  42. Wihlborg R, Pippitt D, Marsili R (2008) Headspace sorptive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J Microbiol Methods 75:244–250

    Article  CAS  PubMed  Google Scholar 

  43. Li C, Krewer GW, Ji P, Scherm H, Kays SJ (2010) Gas sensor array for blueberry fruit disease detection and classification. Postharvest Biol Technol 55:144–149

    Article  CAS  Google Scholar 

  44. Halim AF, Narciso JA, Collins RP (1975) Odorous constituents of Penicillium decumbens. Mycologia 67:1158–1165

    Article  CAS  PubMed  Google Scholar 

  45. Collins RP (1976) Terpenes and odoriferous materials from microorganisms. Lloydia 39(1):20–24

    CAS  Google Scholar 

  46. Nilsson T, Larsen TO, Montanarella L, Madsen JO (1996) Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species. J Microbiol Methods 25:245–255

    Article  CAS  Google Scholar 

  47. Vázquez BI, Fente C, Franco CM, Vazquez MJ, Cepeda A (2001) Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. Int J Food Microbiol 67:157–163

    Article  PubMed  Google Scholar 

  48. Reddy CS, Reddy KRN, Prameela M, Mangala UN, Muralidharan K (2007) Identification of antifungal component in clove that inhibits Aspergillus sp. colonizing rice grains. J Mycol Plant Pathol 37:87–94

    CAS  Google Scholar 

  49. Tullio V, Nostro A, Mandras N, Dugo P, Banche G, Cannatelli MA, Cuffini AM, Alonzo V, Carlone NA (2007) Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J Appl Microbiol 102:1544–1550

    Article  CAS  PubMed  Google Scholar 

  50. Kumar A, Shukla R, Singh P, Dubey NK (2009) Biodeterioration of some herbal raw materials by storage fungi and aflatoxin and assessment of Cymbopogon flexuosus essential oil and its components as antifungal. Int Biodeterior Biodegradation 63:712–716

    Article  CAS  Google Scholar 

  51. Bauer K, Garbe D, Surburg H (1990) Common fragrance and flavour materials: preparation, properties and uses. VCH, Weinheim

    Google Scholar 

  52. Lei H, Wang Y, Su C, Liang F, Su W, Hui M, Shaw P, Luo Y (2010) Chemical composition and antifungal activity of essential oils of Thuja sutchuenensis, a critically endangered species endemic to China. Nat Prod Commun 5(10):1673–1676

    CAS  PubMed  Google Scholar 

  53. Kim SG, Ma EC, Je GH, Yoon SY (2009) A composition using antibacterial and antifunga containing Thujopsis dolobrata oil. Repub. Korean Kongkae Taeho Kongbo, Patent KR 2009020227 A 20090226

  54. Hao C, Du X, Zhuang S, Ma B, Zhang X (2007) Chemical constituents and fungicidal activity of essential oil from Mikania micrantha. Xibei Zhiwu Xuebao 27(10):2097–2103

    CAS  Google Scholar 

  55. Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ugalde U (2006) Autoregulatory signals in mycelial fungi. In: Fischer R, Kües U (eds) The mycota, vol I. Springer, Berlin, pp 2035–2213

    Google Scholar 

  57. Breeuwer P, De Reu JC, Drocourt J, Rombouts FM, Abee T (1997) Nonanoic acid, a fungal self-inhibitor, prevents germination of Rhizopus oligosporus sporangiospores by dissipation of the ph gradient. Appl Environ Microbiol 63(1):178–185

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Macko V, Staples RC, Gershon H, Renwick JAA (1970) Self-inhibitor of bean rust uredospores: methyl 3,4-dimethoxycinnamate. Science 170:539–540

    Article  CAS  PubMed  Google Scholar 

  59. Macko V, Staples RC (1973) Regulation of uredospore germination and germ tube development. Bull Torrey Bot Club 100:223–229

    Article  CAS  Google Scholar 

  60. Allen PJ (1976) Spore germination and its regulation. In: Heitefuss R, Williams PH (eds) Encyclopedia of plant physiology, vol 4. Springer, Berlin, pp 51–85

    Google Scholar 

  61. Nemcovic M, Jakubikova L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    Article  CAS  PubMed  Google Scholar 

  62. Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54:67–75

    Article  CAS  PubMed  Google Scholar 

  63. Claeson A, Levin J, Blomquist G, Sunesson A (2002) Volatile metabolites from microorganisms grown on humid building materials and synthetic media. J Environ Monit 4:667–672

    Article  CAS  PubMed  Google Scholar 

  64. Moularat S, Robine E, Ramalho O, Oturan MA (2008) Detection of fungal development in a closed environment through the identification of specific VOC: demonstration of a specific VOC fingerprint for fungal development. Sci Total Environ 407:139–146

    Article  CAS  PubMed  Google Scholar 

  65. Van Lancker F, Adams A, Delmulle B, De Saeger S, Moretti A, Van Peteghem C, De Kimpe N (2008) Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit 10:1127–1133

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are indebted to the Research Foundation Flanders (FWO-Vlaanderen) for financial support (research project G.0034.07) and for a Postdoctoral Fellowship of A. Adams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert De Kimpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polizzi, V., Fazzini, L., Adams, A. et al. Autoregulatory Properties of (+)-Thujopsene and Influence of Environmental Conditions on Its Production by Penicillium decumbens . Microb Ecol 62, 838–852 (2011). https://doi.org/10.1007/s00248-011-9905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9905-9

Keywords

Navigation