Skip to main content
Log in

Molecular Response of the Bloom-Forming Cyanobacterium, Microcystis aeruginosa, to Phosphorus Limitation

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cyanobacteria blooms caused by species such as Microcystis have become commonplace in many freshwater ecosystems. Although phosphorus (P) typically limits the growth of freshwater phytoplankton populations, little is known regarding the molecular response of Microcystis to variation in P concentrations and sources. For this study, we examined genes involved in P acquisition in Microcystis including two high-affinity phosphate-binding proteins (pstS and sphX) and a putative alkaline phosphatase (phoX). Sequence analyses among ten clones of Microcystis aeruginosa and one clone of Microcystis wesenbergii indicates that these genes are present and conserved within the species, but perhaps not the genus, as phoX was not identified in M. wesenbergii. Experiments with clones of M. aeruginosa indicated that expression of these three genes was strongly upregulated (50- to 400-fold) under low inorganic P conditions and that the expression of phoX was correlated with alkaline phosphatase activity (p < 0.005). In contrast, cultures grown exclusively on high levels of organic phosphorus sources (adenosine 5′-monophosphate, β-glycerol phosphate, and d-glucose-6-phosphate) or under nitrogen-limited conditions displayed neither high levels of gene expression nor alkaline phosphatase activity. Since Microcystis dominates phytoplankton assemblages in summer when levels of inorganic P (Pi) are often low and/or dominate lakes with low Pi and high organic P, our findings suggest this cyanobacterium may rely on pstS, sphX, and phoX to efficiently transport Pi and exploit organic sources of P to form blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aiba H, Nagaya M, Mizuno T (1993) Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol 8:81–91

    Article  PubMed  CAS  Google Scholar 

  2. Bertram PE (1993) Total phosphorus and dissolved oxygen trends in the central basin of Lake Erie, 1970–1991. J Gt Lakes Res 19:224–236

    Article  CAS  Google Scholar 

  3. Bradford ME, Peters RH (1987) The relationship between chemically analyzed phosphorus fractions and bioavailable phosphorus. Limnol Oceanogr 32:1124–1137

    Article  CAS  Google Scholar 

  4. Brittain SM, Wang J, Babcock-Jackson L, Carmichael WW, Rinehart KL, Culver DA (2000) Isolation and characterization of microcystins, cyclic heptapeptide hepatotoxins from a Lake Erie strain of Microcystis aeruginosa. J Gt Lakes Res 26:241–249

    Article  CAS  Google Scholar 

  5. Carmichael WW, Gorham PR (1974) An improved method for obtaining axenic clones of planktonic blue-green algae. J Phycol 10:238–240

    Google Scholar 

  6. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London

    Book  Google Scholar 

  7. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    Article  CAS  Google Scholar 

  8. Davis TW, Harke MJ, Marcoval MA, Goleski J, Orano-Dawson C, Berry DL, Gobler CJ (2010) Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat Microb Ecol 61:149–162

    Article  Google Scholar 

  9. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Research 27:4636–4641

    Article  PubMed  CAS  Google Scholar 

  10. Dempster EL, Pryor KV, Francis D, Young JE, Rogers HJ (1999) Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques 27:66–68

    PubMed  CAS  Google Scholar 

  11. Dyhrman ST, Ammerman JW, Van Mooy BAS (2007) Microbes and the marine phosphorus cycle. Oceanography 20:110–116

    Article  Google Scholar 

  12. Francko DA, Heath RT (1979) Functionally distinct classes of complex phosphorus compounds in lake water. Limnol Oceanogr 24:463–473

    Article  CAS  Google Scholar 

  13. Frangeul L, Quillardet P, Castets A-M, Humbert J-F, Matthijs HC, Cortez D, Tolonen A, Zhang C-C, Gribaldo S, Kehr J-C, Zilliges Y, Ziemert N, Becker S, Talla E, Latifi A, Billault A, Lepelletier A, Dittmann E, Bouchier C, Tandeau de Marsac N (2008) Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9:274

    Article  PubMed  Google Scholar 

  14. Ginn HP, Pearson LA et al (2010) NtcA from Microcystis aeruginosa PCC 7806 is autoregulatory and binds to the microcystin promoter. Appl Environ Microbiol 76(13):4362–4368. doi:10.1128/AEM.01862-09

    Article  PubMed  CAS  Google Scholar 

  15. Gobler CJ, Buck NJ, Sieracki ME, Sanudo-Wilhelmy SA (2006) Nitrogen and silicon limitation of phytoplankton communities across an urban estuary: The East River-Long Island Sound system. Estuarine Coastal and Shelf Science 68:127–138

    Article  CAS  Google Scholar 

  16. Gobler CJ, Davis TW, Coyne KJ, Boyer GL (2007) Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6:119–133

    Article  CAS  Google Scholar 

  17. Heath RT, Fahnenstiel GL, Gardner WS, Cavaletto JF, Hwang SJ (1995) Ecosystem-level effects of zebra mussels (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. J Gt Lakes Res 21:501–516

    Article  CAS  Google Scholar 

  18. Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in fresh-water and marine environments—A review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822

    Article  CAS  Google Scholar 

  19. Heron J (1961) The seasonal variation of phosphate, silicate, and nitrate in waters of the English lake district. Limnol Oceanogr 6:338–346

    Article  CAS  Google Scholar 

  20. Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    Article  CAS  Google Scholar 

  21. Hudnell HK, Dortch Q, Zenick H (2008) Chapter 1: An overview of the interagency, international symposium on cyanobacterial harmful algal blooms (ISOC-HAB): advancing the scientific understanding of freshwater harmful algal blooms. In: Hudnell HK (ed) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, vol 619. Springer-Verlag Berlin, Berlin, pp 1–16

    Chapter  Google Scholar 

  22. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  23. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete Genomic Sequence of the Filamentous Nitrogen-fixing Cyanobacterium Anabaena sp. Strain PCC 7120. DNA Res 8:205–213

    Article  PubMed  CAS  Google Scholar 

  24. Kaneko T, Nakajima N, Okamoto S, Suzuki I, Tanabe Y, Tamaoki M, Nakamura Y, Kasai F, Watanabe A, Kawashima K, Kishida Y, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabatai S, Watanabe MM (2007) Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res 14:247–256

    Article  PubMed  CAS  Google Scholar 

  25. Kathuria S, Martiny AC (2010) Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria. Environ Microbiol 13:74–83

    Article  Google Scholar 

  26. Kolowith LC, Ingall ED, Benner R (2001) Composition and cycling of marine organic phosphorus. Limnol Oceanogr 46:309–320

    Article  CAS  Google Scholar 

  27. Luo HW, Bennera R, Long RA, Hu JJ (2009) Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci USA 106:21219–21223

    Article  PubMed  CAS  Google Scholar 

  28. Martiny A, Coleman M, Chisholm S (2006) Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci USA 103:12552–12557

    Article  PubMed  CAS  Google Scholar 

  29. Monds RD, Newell PD, Schwartzman JA, O'Toole GA (2006) Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl Environ Microbiol 72:1910–1924

    Article  PubMed  CAS  Google Scholar 

  30. Moore LR, Ostrowski M, Scanlan DJ, Feren K, Sweetsir T (2005) Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat Microb Ecol 39:257–269

    Article  Google Scholar 

  31. Murphy TP, Irvine K, Guo J, Davies J, Murkin H, Charlton M, Watson SB (2003) New microcystin concerns in the lower great lakes. Water Qual Res J Canada 38:127–140

    CAS  Google Scholar 

  32. Neilan BA, Jacobs D, DelDot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Article  PubMed  CAS  Google Scholar 

  33. Orchard ED, Webb EA, Dyhrman ST (2009) Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environ Microbiol 11:2400–2411

    Article  PubMed  CAS  Google Scholar 

  34. Ouellette AJA, Handy SM, Wilhelm SW (2006) Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microb Ecol 51:154–165

    Article  PubMed  CAS  Google Scholar 

  35. Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33:823–847

    Article  CAS  Google Scholar 

  36. Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms with an emphasis on cyanobacteria. The Scientific World 1:76–113

    Article  CAS  Google Scholar 

  37. Paerl HW (2009) Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions are essential. Estuar Coast 32:593–601

    Article  CAS  Google Scholar 

  38. Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Article  Google Scholar 

  39. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  40. Pitt FD, Mazard S, Humphreys L, Scanlan DJ (2010) Functional characterization of Synechocystis sp strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium. J Bacteriol 192:3512–3523

    Article  PubMed  CAS  Google Scholar 

  41. Plaffl MW, Horgan G, Leo D (2002) Relative Expression Software Tool (REST) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:E36

    Article  Google Scholar 

  42. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microfloral. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  43. Raikow DF, Sarnelle O, Wilson AE, Hamilton SK (2004) Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels. Limnol Oceanogr 49:482–487

    Article  Google Scholar 

  44. Rao NN, Torriani A (1990) Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol 4:1083–1090

    Article  PubMed  Google Scholar 

  45. Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ Sci Technol 39:4198–4205

    Article  PubMed  CAS  Google Scholar 

  46. Schindler DE, Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1997) Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277:248–251

    Article  CAS  Google Scholar 

  47. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  PubMed  CAS  Google Scholar 

  48. Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. PNAS 105:11254–11258

    Article  PubMed  CAS  Google Scholar 

  49. Sebastian M, Ammerman JW (2009) The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. Int Soc Microb Ecol J 3:563–572

    CAS  Google Scholar 

  50. Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green-algae in lake phytoplankton. Science 221:669–671

    Article  PubMed  CAS  Google Scholar 

  51. Smith VH, Willen E, Karlsson B (1987) Predicting the summer peak biomass of 4 species of blue-green algae (Cyanophyta cyanobacteria) in Swedish lakes. Water Resour Bull 23:397–402

    Google Scholar 

  52. Sterner RW (2008) On the phosphorus limitation paradigm for Lakes. Int Rev Hydrobiol 93:433–445

    Article  CAS  Google Scholar 

  53. Su Z, Olman V, Xu Y (2007) Computational prediction of Pho regulons in cyanobacteria. BMC Genomics 8:156

    Article  PubMed  Google Scholar 

  54. Suzuki S, Ferjani A, Suzuki I, Murata N (2004) The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J Biol Chem 279:13234–13240

    Article  PubMed  CAS  Google Scholar 

  55. Tetu SG, Brahamsha B, Johnson DA, Tai V, Phillippy K, Palenik B, Paulsen IT (2009) Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp WH8102. Isme J 3:835–849

    Article  PubMed  CAS  Google Scholar 

  56. Torriani-Gorini A, Yagil E, Silver S (1994) Phosphate in microorganisms: cellular and molecular biology. American Society for Microbiology, Washington, DC

    Google Scholar 

  57. Torriani AM (1990) From cell membrane to nucleotides—the phosphate regulon in Escherichia coli. BioEssays 12:371–376

    Article  PubMed  CAS  Google Scholar 

  58. Trimbee AM, Prepas EE (1987) Evaluation of total phosphorus as a predictor of the relative biomass of blue-green-algae with emphasis on Alberta lakes. Can J Fish Aquat Sci 44:1337–1342

    Article  CAS  Google Scholar 

  59. Valderrama JC (1981) The simultaneous analysis of total nitrogen and phosphorus in natural waters. Mar Chem 10:109–122

    Article  CAS  Google Scholar 

  60. van Mourik A, Bleumink-Pluym NMC, van Dijk L, van Putten JPM, Wösten MMSM (2008) Functional analysis of a Campylobacter jejuni alkaline phosphatase secreted via the Tat export machinery. Microbiology-(UK) 154:584–592

    Article  Google Scholar 

  61. Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221

    Article  CAS  Google Scholar 

  62. Vershinina OA, Znamenskaya LV (2002) The Pho regulons of bacteria. Microbiology 71:497–511

    Article  CAS  Google Scholar 

  63. Wang J, Stieglitz KA, Kantrowitz ER (2005) Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry 44:8378–8386

    Article  PubMed  CAS  Google Scholar 

  64. Wanner B (1996) Phosphorus assimilation and control of the phosphate regulon. Escherichia coli and Salmonella: cellular and molecular biology: 1357–1381

  65. Watson SB, McCauley E, Downing JA (1997) Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:487–495

    Article  Google Scholar 

  66. Wilhelm SW, DeBruyn JM, Gillor O, Twiss MR, Livingston K, Bourbonniere RA, Pickell LD, Trick CG, Dean AL, McKay RML (2003) Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie. Aquat Microb Ecol 32:275–285

    Article  Google Scholar 

  67. Worm J, Søndergaard M (1998) Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat Microb Ecol 14:19–28

    Article  Google Scholar 

  68. Wu JR, Shien JH, Shieh HK, Hu CC, Gong SR, Chen LY, Chang PC (2007) Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. FEMS Microbiol Lett 267:113–120

    Article  PubMed  CAS  Google Scholar 

  69. Yuan L, Zhu W, Xiao L, Yang LY (2009) Phosphorus cycling between the colonial cyanobacterium Microcystis aeruginosa and attached bacteria, Pseudomonas. Aquat Ecol 43:859–866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jackie Collier for useful comments and feedback on this research. We thank Dr. Greg Boyer and Dr. Steve Wilhelm for supplying Microcystis cultures. This work was supported by the NOAA-ECOHAB program being funded by the National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research under award no. NA10NOS4780140 to Stony Brook University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Gobler.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harke, M.J., Berry, D.L., Ammerman, J.W. et al. Molecular Response of the Bloom-Forming Cyanobacterium, Microcystis aeruginosa, to Phosphorus Limitation. Microb Ecol 63, 188–198 (2012). https://doi.org/10.1007/s00248-011-9894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9894-8

Keywords

Navigation