Skip to main content
Log in

Influence of Illumination on Settlement of Diatom Navicula sp.

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Diatoms are responsible for biofouling, which causes many problems in various marine industries. This study examined the effects of different light conditions (intensity, incident direction, time of illumination) on the settling behavior of the marine diatom Navicula sp. on glass surfaces. The density of this diatom’s settlement on glass was strongly influenced by light conditions. Moreover, very weak light emitted on the bottom of the culture dish could also rapidly inhibit diatom settlement. These phenomena were explained by spatial interference between chloroplast and holdfast-like structures inside the thecae. The holdfast-like structure is observed to be responsible for diatom locomotion and hence the settlement behavior. It was proposed that the interrelation of illumination and attachment of diatoms allowed them to better adapt to the habitat with higher efficiency of attachment and successive reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. de Messano L, Sathler L, Reznik L, Coutinho R (2009) The effect of biofouling on localized corrosion of the stainless steels N08904 and UNS S32760. Int Biodeterior Biodegrad 63:607–614

    Article  Google Scholar 

  2. Callow M, Fletcher R (1994) The influence of low surface energy materials on bioadhesion—a review. Int Biodeterior Biodegrad 34:333–348

    Article  CAS  Google Scholar 

  3. Chambers L, Stokes K, Walsh F, Wood R (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652

    Article  CAS  Google Scholar 

  4. Cooksey K, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96

    Article  Google Scholar 

  5. Lewin R (1984) Microbial adhesion is a sticky problem. Science 224:375–377

    Article  CAS  PubMed  Google Scholar 

  6. Yebra D, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  7. Champ M (2000) A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ 258:21–71

    Article  CAS  PubMed  Google Scholar 

  8. Abbott A, Abel P, Arnold D, Milne A (2000) Cost-benefit analysis of the use of TBT: the case for a treatment approach. Sci Total Environ 258:5–19

    Article  CAS  PubMed  Google Scholar 

  9. Cooney J, Tang R (1999) Quantifying effects of antifouling paints on microbial biofilm formation. Methods Enzymol 310:637–644

    Article  CAS  PubMed  Google Scholar 

  10. Finlay J, Callow M, Ista L, Lopez G, Callow J (2002) The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integr Comp Biol 42:1116–1122

    Article  PubMed  Google Scholar 

  11. Gebeshuber I, Stachelberger H, Drack M (2005) Diatom bionanotribology biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. J Nanosci Nanotechnol 5:79–87

    Article  CAS  PubMed  Google Scholar 

  12. Fletcher M, Loeb G (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Walt D, Smulow J, Turesky S, Hill R (1985) The effect of gravity on initial microbial adhesion. J Colloid Interface Sci 107:334–336

    Article  CAS  Google Scholar 

  14. Kiørboe T (1993) Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29:1–72

    Article  Google Scholar 

  15. Bahulikar R, Kroth P (2007) Localization of EPS components secreted by freshwater diatoms using differential staining with fluorophore-conjugated lectins and other fluorochromes. Eur J Phycol 42:199–208

    Article  CAS  Google Scholar 

  16. Higgins M, Molino P, Mulvaney P, Wetherbee R (2003) The structure and nanomechanical properties of the adhesive mucilage that mediates diatom–substratum adhesion and motility. J Phycol 39:1181–1193

    Article  CAS  Google Scholar 

  17. Wetherbee R, Lind J, Burke J, Quatrano R (1998) The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol 34:9–15

    Article  Google Scholar 

  18. Bhaskar P, Bhosle N (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:45–53

    CAS  Google Scholar 

  19. Admiraal W (1976) Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar Biol 39:1–9

    Article  Google Scholar 

  20. de Kerchove A, Elimelech M (2008) Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir 24:3392–3399

    Article  PubMed  Google Scholar 

  21. Durbin E (1974) Studies on the autecology of the marine diatom Thalassiosira nordenskiöldii Cleve. I. The influence of daylength, light intensity, and temperature on growth. J Phycol 10:220–225

    Google Scholar 

  22. Colijn F, Buurt G (1975) Influence of light and temperature on the photosynthetic rate of marine benthic diatoms. Mar Biol 31:209–214

    Article  Google Scholar 

  23. Eppley R, Holmes R, Paasche E (1967) Periodicity in cell division and physiological behavior of Ditylum brightwellii, a marine planktonic diatom, during growth in light-dark cycles. Arch Microbiol 56:305–323

    Google Scholar 

  24. Post A, Dubinsky Z, Wyman K, Falkowski P (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Mar Biol 83:231–238

    Article  Google Scholar 

  25. Fischer H, Gröning C, Köster C (1977) Vertical migration rhythm in freshwater diatoms. Hydrobiologia 56:259–263

    Article  Google Scholar 

  26. Mitbavkar S, Anil A (2004) Vertical migratory rhythms of benthic diatoms in a tropical intertidal sand flat: influence of irradiance and tides. Mar Biol 145:9–20

    Article  Google Scholar 

  27. Friedman A, Alberte R (1986) Biogenesis and light regulation of the major light harvesting chlorophyll–protein of diatoms. Plant Physiol 80:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Owens T, Wold E (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum: I. Isolation and characterization of pigment–protein complexes. Plant Physiol 80:732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Janssen M, Bathke L, Marquardt J, Krumbein W, Rhiel E (2010) Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities. Int Microbiol 4:27–33

    Google Scholar 

  30. Holland R, Dugdale T, Wetherbee R, Brennan A, Finlay J, Callow J, Callow M (2004) Adhesion and motility of fouling diatoms on a silicone elastomer. Biofouling 20:323–329

    Article  CAS  PubMed  Google Scholar 

  31. Chung K, Schumacher J, Sampson E, Burne R, Antonelli P, Brennan A (2007) Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2:89–94

    Article  CAS  PubMed  Google Scholar 

  32. Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynth Res 4:361–373

    Article  CAS  Google Scholar 

  33. Edgar L, Pickett-Heaps J (1983) The mechanism of diatom locomotion. I. An ultrastructural study of the motility apparatus. Proc R Soc London Ser B 218:331–343

    Article  Google Scholar 

  34. Poulsen N, Spector I, Spurck T, Schultz T, Wetherbee R (1999) Diatom gliding is the result of an actin–myosin motility system. Cell Motil Cytoskel 44:23–33

    Article  CAS  Google Scholar 

  35. Jonsson P, Berntsson K, Larsson A (2004) Linking larval supply to recruitment: flow-mediated control of initial adhesion of barnacle larvae. Ecology 85:2850–2859

    Article  Google Scholar 

  36. Paerl H, Williams N (1976) The relation between adenosine triphosphate and microbial biomass in diverse aquatic ecosystems. Int Rev Gesamten Hydrobiol Hydrogr 61:659–664

    Article  CAS  Google Scholar 

  37. Villareal T (1988) Positive buoyancy in the oceanic diatom Rhizosolenia debyana H. Peragallo. Deep Sea Res Part A 35:1037–1045

    Article  Google Scholar 

  38. Villareal T (1992) Buoyancy properties of the giant diatom Ethmodiscus. J Plankton Res 14:459–463

    Article  Google Scholar 

  39. Gross F, Zeuthen E (1948) The buoyancy of plankton diatoms: a problem of cell physiology. Proc R Soc London Ser B 135:382–389

    Article  CAS  Google Scholar 

  40. Moore J, Villareal T (1996) Buoyancy and growth characteristics of three positively buoyant marine diatoms. Mar Ecol Prog Ser 132:203–213

    Article  Google Scholar 

  41. Oliver R, Walsby A (1984) Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol Oceanogr 29:879–886

    Article  Google Scholar 

  42. McConville M, Wetherbee R (1983) The bottom-ice microalgal community from annual ice in the inshore waters of East Antarctica. J Phycol 19:431–439

    Article  Google Scholar 

  43. Round F, Happey C (1965) Persistent, vertical-migration rhythms in benthic microflora. Eur J Phycol 2:463–471

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Project under grant nos. 51075228, 50675112, and 50721004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiadao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, S., Wang, J. & Chen, D. Influence of Illumination on Settlement of Diatom Navicula sp.. Microb Ecol 62, 931–940 (2011). https://doi.org/10.1007/s00248-011-9892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9892-x

Keywords

Navigation