Skip to main content
Log in

Coxiella Symbionts in the Cayenne Tick Amblyomma cajennense

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Members of the Coxiella genus are intracellular bacteria that can infect a variety of animals including humans. A symbiotic Coxiella was recently described in Amblyomma americanum ticks in the Northern Hemisphere with no further investigations of other Amblyomma species in other geographic regions. These ixodid ticks represent a group of important vectors for human infectious agents. In the present work, we have demonstrated that symbiotic Coxiella (SCox) are widespread, occurring in South America and infecting 100% of all life stages and eggs of the Cayenne ticks Amblyomma cajennense from Brazil and the USA. Using light microscopy, in situ hybridization, and PCR, we demonstrated SCox in salivary glands, ovaries, and the intestines of A. cajennense. These symbionts are vertically and transtadially transmitted in laboratory reared A. cajennense, and quantitative PCR analyses indicate that SCox are more abundant in adult female ticks, reaching values corresponding to an 11×, 38×, and 200× increase in SCox 16S rRNA gene copy number in unfed females, compared to unfed nymphs, larvae, and eggs, respectively. Phylogenetic analyses showed distinct SCox subpopulations in the USA and Brazil and demonstrated that SCox bacteria do not group with pathogenic Coxiella burnetii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Amann RL, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  2. Beare PA, Howe D, Cockrell DC, Omsland A, Hansen B, Hansen RA (2009) Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191:1369–1381

    Article  PubMed  CAS  Google Scholar 

  3. Black W IV, Piesman J (1994) Phylogeny of hard- and soft-tick taxa (Acari: Ixodidae) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA 91:10034–10038

    Article  PubMed  CAS  Google Scholar 

  4. Burnevall P, Choucair J, Paraf F, Casalta JP, Raoult D, Scherchen F, Mainardi JL (2001) Detection of fastidious bacteria in cardiac valves in cases of blood culture negative endocardites. J Clin Pathol 54:238–240

    Article  Google Scholar 

  5. Childs JE, Paddock CD (2003) The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. Annu Rev Entomol 48:307–337

    Article  PubMed  CAS  Google Scholar 

  6. Guedes E, Leite RC, Prata MCA, Pacheco RC, Walker DH, Labruna MB (2005) Detection of Rickettsia rickettsii in the tick Amblyomma cajennense in a new Brazilian spotted fever-endemic area in the state of Minas Gerais. Mem Inst Oswaldo Cruz 100:841–845

    Article  PubMed  Google Scholar 

  7. Jasinskas A, Zhong J, Barbour A (2007) Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 73:334–336

    Article  PubMed  CAS  Google Scholar 

  8. Klyachko O, Stein BD, Grindle N, Clay K, Fuqua C (2007) Localization and visualization of a Coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol 73:6584–6594

    Article  PubMed  CAS  Google Scholar 

  9. Labruna MB (2009) Ecology of Rickettsia in South America. Ann NY Acad Sci 1166:156–166

    Article  PubMed  Google Scholar 

  10. Lane DJ (1991) 16S/23S rDNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175

    Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(delta-delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  12. Machado-Ferreira E, Piesman J, Zeidner NS, Soares CAG (2009) Francisella-like endosymbiont DNA and Francisella tularensis virulence related genes in Brazilian ticks (Acari: Ixodidae). J Med Entomol 46:369–374

    Article  PubMed  Google Scholar 

  13. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553

    PubMed  CAS  Google Scholar 

  14. Park JH, Seok SH, Baek MW, Lee HY, Kim DJ, Cho JS, Kim CK, Hwang DY, Park JH (2006) Microbiological monitoring of guinea pigs reared conventionally at two breeding facilities in Korea. Exp Anim 55:427–432

    Article  PubMed  CAS  Google Scholar 

  15. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928

    Article  PubMed  CAS  Google Scholar 

  16. Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc Biol Sci 273:2097–2106

    Article  PubMed  Google Scholar 

  17. Piesman J (1993) Standard system for infecting ticks (Acari:Ixodidae) with the lyme disease spirochete, Borrelia burgdorferi. J Med Entomol 30:199–203

    PubMed  CAS  Google Scholar 

  18. Psaroulaki A, Ragiadakou D, Kouris G, Papadopoulus B, Chaniotis B, Tselentis Y (2006) Ticks, tick-borne rickettsiae, and Coxiella burnetii in the Greek Island of Cephalonia. Ann NY Acad Sci 1078:389–399

    Article  PubMed  CAS  Google Scholar 

  19. Reeves WK, Loftis AD, Sanders F, Spinks MD, Wills W, Denison AM, Dasch GA (2005) Borrelia, Coxiella and Rickettsia in Carios capensis (Acari: Argasidae) from brown pelican (Pelecanus occidentalis) rookery in South Carolina, USA. Exp Appl Acarol 39:321–329

    Article  Google Scholar 

  20. Reeves WK (2008) Molecular evidence for a novel Coxiella from Argas monolakensis (Acari: Argasidae) from Mono Lake, California, USA. Exp Appl Acarol 44:57–60

    Article  PubMed  Google Scholar 

  21. Roger F, Roger A (1958) Stain affinities of Rickettsiae & large visible viruses (lymphogranuloma-psittacosis group). I. Mechanism of differentiation with Macchiavello stain & various practical application. Ann Inst Pasteur (Paris) 94:126–128

    CAS  Google Scholar 

  22. Sanders DM, Parker JE, Walker WW, Buchholz MW, Blount K, Kiel JL (2008) Field collection and genetic classification of tick-borne Rickettsiae and Rickettsiae-like pathogens from south Texas: Coxiella burnetii isolated from field-collected Amblyomma cajennense. Ann NY Acad Sci 1149:208–211

    Article  PubMed  CAS  Google Scholar 

  23. Smith DJW (1940) Studies of the epidemiology of Q fever. III. The transmission of Q fever by the ticks Haemaphisalis humerosa. Aust J Exp Biol Med Sci 18:103–118

    Article  Google Scholar 

  24. Smith DJW (1941) Studies of the epidemiology of Q fever. VIII. The transmission of Q fever by the ticks Rhipicephalus sanguineus. Aust J Exp Biol Med Sci 19:119–122

    Google Scholar 

  25. Smith DJW (1942) Studies of the epidemiology of Q fever. III. The transmission of Q fever by the ticks Ixodes holociclus. Aust J Exp Biol Med Sci 20:213–217

    Article  Google Scholar 

  26. Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, New York

    Google Scholar 

  27. Souza CE, Morales-Fulho J, Ogrzewalska M, Uchoa FC, Horta MC, Souza SS, Borba RC, Labruna MB (2009) Experimental infection of capybaras Hydrochoerus hydrochaeris by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vet Parasitol 161:116–121

    Article  PubMed  Google Scholar 

  28. Troughton DR, Levin ML (2007) Life cycles of seven ixodid tick species (Acari: Ixodidae) under standardized laboratory condition. J Med Entomol 44:732–740

    Article  PubMed  Google Scholar 

  29. Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2:e405

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Erik Machado-Ferreira’s graduate fellowship was supported by the Brazilian federal agency CAPES and by the CDC. This is part of Erik Machado-Ferreira’s PhD thesis work. The authors would like to thank to Mr. Manoel Itamar do Nascimento for tick sampling and Ms. Maria de Fátima S. Cardoso, Mr. Luiz F. P. Frade, and Mr. Sílvio P. Nascimento for their excellent technical assistance. The authors would also like to thank Dr. Robert Massung for his constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. G. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado-Ferreira, E., Dietrich, G., Hojgaard, A. et al. Coxiella Symbionts in the Cayenne Tick Amblyomma cajennense . Microb Ecol 62, 134–142 (2011). https://doi.org/10.1007/s00248-011-9868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9868-x

Keywords

Navigation