Skip to main content
Log in

Isolation and Characterization of Exopolysaccharide Secreted by a Toxic Dinoflagellate, Amphidinium carterae Hulburt 1957 and Its Probable Role in Harmful Algal Blooms (HABs)

  • Environmental microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Extracellular polymeric substances (EPS) produced by a toxic dinoflagellate Amphidinium carterae Hulburt 1957 was isolated and characterized. Molecular masses of the EPS were about 233 and 1,354 kDa. Spectral analyses by 1H nuclear magnetic resonance and Fourier Transformed–Infrared Spectroscopy revealed the characteristic of the functional groups viz. primary amine, carboxyl, halide, and sulfate groups present in the EPS. However, five elements (C, O, Na, S, and Ca) were detected by scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDX) analysis. X-ray diffraction and differential scanning calorimetric analysis confirmed the amorphous nature of EPS, which was comprised of an average particle size of 13.969 μm (d 0.5) with 181 nm average roughness. Two monosaccharide constituents, galactose (73.13%) and glucose (26.87%) were detected by gas chromatography–mass spectroscopy analysis. Thermal gravimetric analysis revealed that degradation of EPS obtained from A. carterae takes place in three steps. The EPS produced by A. carterae was found to be beneficial for the growth of both A. carterae and Bacillus pumilus. The potential heterogeneous properties of EPS may play an important role in harmful algal bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arias S, Moral AD, Ferrer MR, Tallon R, Quesada E, Bejar V (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  PubMed  CAS  Google Scholar 

  2. Azam F (1998) Microbial controls of oceanic carbon flux: the plot thickens. Science 280:694–696

    Article  CAS  Google Scholar 

  3. Bell WH, Lung JM, Mitchell R (1974) Selective stimulation of marine bacteria by algal extracellular products. Biol Bull 143:265–277

    Article  Google Scholar 

  4. Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88(1):10

    Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  6. Bremer PJ, Geesey GG (1999) An evaluation of biofilms development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofouling 3:89–100

    Article  Google Scholar 

  7. Chattopadhyay J, Sarkar RR, Abdllaoui AE (2002) A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J Math Appl Med Biol 19:137–161

    Article  PubMed  CAS  Google Scholar 

  8. Chi Z, Zhao S (2003) Optimization of medium and cultivation conditions for pullulan production by new pullulan-producing yeast. Enzyme Microb Tech 33:206–211

    Article  CAS  Google Scholar 

  9. De-Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  CAS  Google Scholar 

  10. Domozych DS, Kort S, Benton S, Yu T (2005) The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms 2:129–144

    Article  Google Scholar 

  11. Duan X, Chi Z, Wang L, Wang X (2008) Influence of different sugars on pullulan production and activities of a-phosphoglucose mutase, UDP-Gpyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohyd Polym 73:587–593

    Article  CAS  Google Scholar 

  12. Engel A (2000) The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. J Plankton Res 22:485–497

    Article  CAS  Google Scholar 

  13. Freitas F, Alves VD, Pais J, Costa N, Oliveira C, Mafra L, Hilliou L, Oliveira R, Reis MA (2009) Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresource Technol 100:859–865

    Article  CAS  Google Scholar 

  14. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743

    Article  CAS  Google Scholar 

  15. Grossart HP, Simon M (1998) Bacterial colonization, microbial decomposition of limnetic organic aggregates (lake snow). Aquat Microb Ecol 15:115–125

    Article  Google Scholar 

  16. Ismael AA, Halim Y, Kalil A (1999) Optimum growth conditions for Amphidinium carterae Hulburt from eutrophic waters in Alexandria (Egypt) and its toxicity to the brine shrimp Artemia salina. Grana 38:179–185

    Google Scholar 

  17. Ittekkot V, Brockmann U, Michaelis W, Degen ET (1981) Dissolved free and combined carbohydrates during a phytoplankton bloom in the northern North Sea. Mar Ecol Prog Ser 4:299–305

    Article  CAS  Google Scholar 

  18. Khandeparkar RDS, Bhosle NB (2001) Extracellular polymeric substances of the marine fouling diatom Amphora rostrata Wm. Sm. Biofouling 17:117–127

    Article  Google Scholar 

  19. Kiemle SN, Domozych DS, Gretz MR (2007) The extracellular polymeric substances of desmids (Conjugatophyceae, Streptophyta): chemistry, structural analyses and implications in wetland biofilms. Phycologia 46(6):617–627

    Article  Google Scholar 

  20. Kumar CG, Joo HS, Choi JW, Koo YM, Changa CS (2004) Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb Technol 34:673–681

    Article  CAS  Google Scholar 

  21. Manzoni M, Rollini M (2001) Isolation and characterization of the exopolysaccharide produced by Daedalea quercina. Biotechnol Lett 23:1491–1497

    Article  CAS  Google Scholar 

  22. Martinez J, Smith DC, Steward GF, Azam F (1996) Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat Microb Ecol 10:223–230

    Article  Google Scholar 

  23. Mata JA, Bejar V, Llamas I, Arias S, Bressollier P, Tallon R, Urdaci MC, Quesada E (2006) Exopolysaccharides produced by the recently described bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol 157:827–835

    Article  PubMed  CAS  Google Scholar 

  24. Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource Technol 100:3382–3386

    Article  CAS  Google Scholar 

  25. Myklestad SM, Haug A (1972) Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. II. Preliminary investigation of the extracellular polysaccharide. J Exp Mar Biol Ecol 9:137–144

    Article  CAS  Google Scholar 

  26. Nayak BB, Karunasagar I, Karunasagar I (1997) Infuence of bacteria on growth and hemolysin production by the marine dinoflagellate Amphidinium carterae. Mar Biol 130:35–39

    Article  CAS  Google Scholar 

  27. Nichols CM, Lardiere SG, Bowman JP, Nichols PD, Gibson JAE, Guezennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  PubMed  CAS  Google Scholar 

  28. Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technol 97:1822–1827

    Article  CAS  Google Scholar 

  29. Pavlova K, Grigorova D (1999) Production and properties of exopolysaccharide by Rhodotorula acheniorum MC. Food Res Intl 32:473–477

    Article  CAS  Google Scholar 

  30. Ricou P, Pinel E, Juhasz N (2005) Temperature experiments for improved accuracy in the calculation of polyamide-11 crystallinity by X-ray diffraction. Advances in X-ray Analysis International Centre for Diffraction Data

  31. Shimazu A, Miyazaki T, Ikeda K (2000) Interpretation of d-spacing determined by wide angle X-ray scattering in 6 FDA-based polyimide by molecular modelling. J Membrane Sci 166:113–118

    Article  CAS  Google Scholar 

  32. Siddhanta AK, Goswami AM, Shanmugam M, Mody KH, Ramavat BK, Mahir OP (2001) Water soluble polysaccharide of marine algae species Ulva (Ulvales, Chlorophyta) of Indian waters. Ind J Mar Sci 30:166–172

    CAS  Google Scholar 

  33. Singh RP, Mantri VA, Reddy CRK, Jha B (2011) Isolation of seaweed associated bacteria and their morphogenesis inducing capability in axenic cultures of the green alga Ulva fasciata. Aquat Biol 12(1):13–21

    Article  Google Scholar 

  34. Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CRK, Jha B (2011b) Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohyd Polym 84:1019–1026

    Article  CAS  Google Scholar 

  35. Smith DC, Steward GF, Long RA, Azam F (1995) Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res-II 42:75–97

    Article  CAS  Google Scholar 

  36. Staats N, de Winder B, Stal LJ, Mur LR (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169

    Article  Google Scholar 

  37. Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellate–cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12(20):1767–1772

    Article  PubMed  CAS  Google Scholar 

  38. Vieira AAH, Ortolano PIC, Giroldo D, Oliveira MJD, Bittar TB, Lombardi AT, Sartori AL (2008) Role of hydrophobic extracellular polysaccharide of Aulacoseira granulate (Bacillariophyceae) on aggregate formation in a turbulent and hypereutrophic reservoir. Limnol Oceanogr 53(5):1887–1899

    Article  CAS  Google Scholar 

  39. Wang Y, Zhang M, Ruan D, Shashkov AS, Kilcoyne M, Savage AV, Zhang L (2004) Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohyd Res 339:327–334

    Article  CAS  Google Scholar 

  40. Ye Z, Zhao X (2010) Phase imaging atomic force microscopy in the characterization of biomaterials. J Microscopy 238(1):27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. B. Rabari, Mr. H. Gupta, Mr. V. Agarwal, and Mrs. P. Bhatt, Analytical Section, CSMCRI, for their enormous help during sample analysis. The authors are also thankful to Ms. D. Jain and Mr. I. Puncha for their help during sample collection. The work was supported by NWP 0018, Council of Scientific and Industrial Research, New Delhi, and SAC-CSMCRI collaborative project (GAP 1049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Kumar Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, S.K., Singh, R.P. & Patel, V. Isolation and Characterization of Exopolysaccharide Secreted by a Toxic Dinoflagellate, Amphidinium carterae Hulburt 1957 and Its Probable Role in Harmful Algal Blooms (HABs). Microb Ecol 62, 518–527 (2011). https://doi.org/10.1007/s00248-011-9852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9852-5

Keywords

Navigation