Skip to main content
Log in

Bacterial Diversity Associated with Populations of Glossina spp. from Cameroon and Distribution within the Campo Sleeping Sickness Focus

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Tsetse flies were sampled in three villages of the Campo sleeping sickness focus in South Cameroon. The aim of this study was to investigate the flies’ gut bacterial composition using culture-dependent techniques. Out of the 32 flies analyzed (27 Glossina palpalis palpalis, two Glossina pallicera, one Glossina nigrofusca, and two Glossina caliginea), 17 were shown to be inhabited by diverse bacteria belonging to the Proteobacteria, the Firmicutes, or the Bacteroidetes phyla. Phylogenetic analysis based on 16S rRNA gene sequences indicated the presence of 16 bacteria belonging to the genera Acinetobacter (4), Enterobacter (4), Enterococcus (2), Providencia (1), Sphingobacterium (1), Chryseobacterium (1), Lactococcus (1), Staphylococcus (1), and Pseudomonas (1). Using identical bacterial isolation and identification processes, the diversity of the inhabiting bacteria analyzed in tsetse flies sampled in Cameroon was much higher than the diversity found previously in flies collected in Angola. Furthermore, bacterial infection rates differed greatly between the flies from the three sampling areas (Akak, Campo Beach/Ipono, and Mabiogo). Last, the geographic distribution of the different bacteria was highly uneven; two of them identified as Sphingobacterium spp. and Chryseobacterium spp. were only found in Mabiogo. Among the bacteria identified, several are known for their capability to affect the survival of their insect hosts and/or insect vector competence. In some cases, bacteria belonging to a given genus were shown to cluster separately in phylogenetic trees; they could be novel species within their corresponding genus. Therefore, such investigations deserve to be pursued in expanded sampling areas within and outside Cameroon to provide greater insight into the diverse bacteria able to infect tsetse flies given the severe human and animal sickness they transmit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Azambuja P, Feder D, Garcia ES (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Experiment Parasitol 107:89–96

    Article  CAS  Google Scholar 

  2. Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    Article  PubMed  CAS  Google Scholar 

  3. Benson D, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17

    Article  PubMed  CAS  Google Scholar 

  4. Brummel T, Ching A, Seroude L, Simon AF, Benzer S (2004) Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci USA 101:12974–12979

    Article  PubMed  CAS  Google Scholar 

  5. Brunhes J, Cuisance D, Bernard G, Hervy J-P (1998) Les glossines ou mouches tsé-tsé: logiciel d’identification et d’enseignement [Glossina, the tsetse fly: an identification and training software]. ORSTOM, CIRAD, Montpellier (Didactiques)

    Google Scholar 

  6. Campbell C, Mummey D, Schmidtmann E, Wilson W (2004) Culture-independent analysis of midgut microbiota in the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol 41:340–348

    Article  PubMed  Google Scholar 

  7. Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565–1576

    Article  PubMed  CAS  Google Scholar 

  8. Demaio J, Pumpuni CB, Kent M, Beier JC (1996) The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Am J Trop Med Hyg 54:219–223

    PubMed  CAS  Google Scholar 

  9. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol 49:71–92

    Article  PubMed  CAS  Google Scholar 

  10. Farikou O, Njiokou F, Mbida Mbida JA, Njitchouang GR, Nana Djeunga H, Asonganyi T, Simarro PP, Cuny G, Geiger A (2010) Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes—an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infect Genet Evol 10:115–121

    Article  PubMed  Google Scholar 

  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 33:783–791

    Article  Google Scholar 

  12. Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, Cuny G, Frutos R (2007) Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol 24:102–109

    Article  PubMed  CAS  Google Scholar 

  13. Geiger A, Fardeau ML, Grebaut P, Vatunga G, Josénando T, Herder S, Cuny G, Truc P, Ollivier B (2009) First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut. Infect Genet Evol 9:1364–70

    Article  PubMed  Google Scholar 

  14. Geiger A, Fardeau ML, Falsen E, Ollivier B, Cuny G (2010) Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. Int J Syst Evol Microbiol 60:1261–5

    Article  PubMed  CAS  Google Scholar 

  15. Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE (2003) Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol 40:371–374

    Article  PubMed  Google Scholar 

  16. Gouveia C, Asensi MD, Zahner V, Rangel EF, Oliveira SM (2008) Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz § Neiva) (Diptera: Psychodidae). Neotrop Entomol 37:597–601

    Article  PubMed  Google Scholar 

  17. Grebaut P, Mbida JA, Kondjio CA, Njiokou F, Penchenier L, Laveissiere C (2004) Spatial and temporal patterns of human African trypanosomiasis (HAT) transmission risk in the Bipindi focus, in the forest zone of southern Cameroon. Vector Borne Zoonotic Dis 4:230–238

    PubMed  CAS  Google Scholar 

  18. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  20. Hammes W, Hertel C (2006) The genera Lactobacillus and Carnobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 4. Springer, New York, NY, pp 320–403

    Chapter  Google Scholar 

  21. Hungate RE (1969) A roll-tube method for the cultivation of strict anaerobes. Methods in Microbiology 3B, 117–132. J.R. Norris and D.W. Ribbons (eds). London: Academic Press

  22. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudol T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed  CAS  Google Scholar 

  23. Jackson TJ, Wang HY, Nugent MJ, Griffin CT, Burnell AM, Dowds BCA (1995) Isolation of insect pathogenic bacteria, Providencia rettgeri, from Heterorhabditis spp. J Appl Bacteriol 78:237–244

    Google Scholar 

  24. Jeyaprakash A, Hoy MA, Allsopp MH (2003) Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 84:96–103

    Article  PubMed  CAS  Google Scholar 

  25. Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294

    PubMed  CAS  Google Scholar 

  26. Kuzina LV, Miller ED, Ge B, Miller TA (2002) Transformation of Enterobacter gergoviae isolated from pink bollworm (Lepidoptera: Gelechiidae) gut with Bacillus thuringiensis toxin. Curr Microbiol 44:1–4

    Article  PubMed  CAS  Google Scholar 

  27. Lacey LA (ed) (1997) Manual of techniques in insect pathology. Academic, San Diego, CA

    Google Scholar 

  28. Lancien J (1981) Description du piège monoconique utilisé pour l’élimination des glossines en République Populaire du Congo. Cah ORSTOM Sér Ent Méd Parasitol 19:235–238

    Google Scholar 

  29. Lazaro JE, Nitcheu J, Predicala RZ, Mangalindan GC, Nesslany F, Marzin D, Concepcion GP, Diquet B (2002) Heptyl prodigiosin, a bacterial metabolite is antimalarial in vivo and non-mutagenic in vitro. J Nat Toxins 11:367–377

    PubMed  CAS  Google Scholar 

  30. Lysyk TJ, Kalischuk-Tymensen L, Selinger LB, Lancaster RC, Wever L, Cheng KJ (1999) Rearing stable fly larvae (Diptera: Muscidae) on an egg yolk medium. J Med Entomol 36:382–388

    PubMed  CAS  Google Scholar 

  31. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  32. Maudlin I, Welburn SC, Mehlitz D (1990) The relationship between rickettsia-like organisms and trypanosome infections in natural populations of tsetse in Liberia. Trop Med Parasitol 41:265–267

    PubMed  CAS  Google Scholar 

  33. Mitsuhashi J, Maramorosch K (1964) Leafhopper tissue culture: embryonic, nymphal and imaginal tissues from aseptic insects. Contrib Boyce Thompson Inst 22:435–460

    Google Scholar 

  34. Moss M (2002) Bacterial pigments. Microbiologist 3:10–12

    Google Scholar 

  35. Njiokou F, Simo G, Nkinin SW, Laveissière C, Herder S (2004) Infection rate of Trypanosoma brucei s.l., T. vivax, T. congolense "forest type", and T. simiae in small wild vertebrates in south Cameroon. Acta Trop 92:139–46

    Article  PubMed  CAS  Google Scholar 

  36. Njiokou F, Laveissière C, Simo G, Nkinin S, Grébaut P, Cuny G, Herder S (2006) Wild fauna as a probable animal reservoir for Trypanosoma brucei gambiense in Cameroon. Infect Genet Evol 6:147–53

    Article  PubMed  CAS  Google Scholar 

  37. Pereira de Oliveira SM, Aguiar de Moraes B, Abrantes Gonçalves C, Giordano-Dias CM, d’Almeida JM, Dutra Asensi M, Mello RP, Brazil RP (2000) Prevalence of microbiota in the digestive tract of wild-caught females of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae). Rev Soc Bras Med Trop 33:319–322

    Google Scholar 

  38. Pidiyar VJ, Jangid K, Patole MS, Shouche YS (2004) Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16S ribosomal RNA gene analysis. Am J Trop Med Hyg 70:597–603

    PubMed  CAS  Google Scholar 

  39. Pumpuni CB, DeMaio J, Kent M, Davis JR, Beier JC (1996) Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54:214–218

    PubMed  CAS  Google Scholar 

  40. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-colleceted Anopheles stephensi-an Asian malarial vector. BMC Microbiol 9:96

    Article  PubMed  Google Scholar 

  41. Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M (2007) Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol 37:595–603

    Article  PubMed  CAS  Google Scholar 

  42. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton, NJ

    Google Scholar 

  43. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    Article  PubMed  CAS  Google Scholar 

  44. Shannon AL, Attwood G, Hopcroft DH, Christeller JT (2001) Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, Hofmannophila pseudospretella. Lett Appl Microbiol 32:36–41

    Article  PubMed  CAS  Google Scholar 

  45. Steinhaus EA (1960) The importance of environmental factors in the insect–microbe ecosystem. Bacteriol Rev 24:365–373

    PubMed  CAS  Google Scholar 

  46. Straif SC, Mbogo CNM, Toure AM, Walker ED, Kaufman M, Toure YT, Beier JC (1998) Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol 35:222–226

    PubMed  CAS  Google Scholar 

  47. Welburn SC, Arnold K, Maudlin I, Gooday GW (1993) Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitol 107:141–145

    Article  Google Scholar 

  48. Winker S, Woese CR (1991) A definition of the domain Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165

    Article  Google Scholar 

  49. Xiang H, Wei G-F, Jia S, Huang J, Miao X-X, Zhou Z, Zhao L-P, Huang Y-P (2006) Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can J Microbiol 52:1085–1092

    Article  PubMed  CAS  Google Scholar 

  50. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  51. Zahner V, Lucarotti CJ, McIntosh D (2008) Application of 16S rDNA-DGGE and plate culture to characterization of bacterial communities associated with the sawfly, Acantholyda erythrocephala (Hymenoptera, Pamphiliidae). Curr Microbiol 57:564–569

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut de Recherche pour le Développement (IRD, France). We warmly thank Mr. Oumarou Farikou and Mr Guy Roger Njitchouang for their excellent technical assistance in the field.

Conflict of Interest Statement

There is no conflict of interest with respect to funding or any other issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Geiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, A., Fardeau, ML., Njiokou, F. et al. Bacterial Diversity Associated with Populations of Glossina spp. from Cameroon and Distribution within the Campo Sleeping Sickness Focus. Microb Ecol 62, 632–643 (2011). https://doi.org/10.1007/s00248-011-9830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9830-y

Keywords

Navigation