Skip to main content
Log in

Unraveling Cyanobacteria Ecology in Wastewater Treatment Plants (WWTP)

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cyanobacteria may be important components of wastewater treatment plants’ (WWTP) biological treatment, reaching levels of 100% of the total phytoplankton density in some systems. The occurrence of cyanobacteria and their associated toxins in these systems present a risk to the aquatic environments and to public health, changing drastically the ecology of microbial communities and associated organisms. Many studies reveal that cyanotoxins, namely microcystins may not act as antibacterial compounds but they might have negative impacts on protozoans, inhibiting their growing and respiration rates and leading to changes in cellular morphology, decreasing consequently the treatment efficacy in WWTP. On the other side, flagellates and ciliates may ingest some cyanobacteria species while the formation of colonies by these prokaryotes may be seen as a defense mechanism against predation. Problems regarding the occurrence of cyanobacteria in WWTP are not limited to toxin production. Other cyanobacterial secondary metabolites may act as antibacterial compounds leading to the disruption of bacterial communities that biologically convert organic materials in WWTP being fundamental to the efficacy of the process. Studies reveal that the potential antibacterial capacity differs according to cyanobacteria specie and it seems to be more effective in Gram (+) bacteria. Thus, to understand the effects of cyanobacterial communities in the efficiency of the waste water treatment it will be necessary to unravel the complex interactions between cyanobacterial populations, bacteria, and protozoa in WWTP in situ studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Amé MV, Enchenique JR, Pflugmacher S (2006) Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba-Argentina). Biodegradation 17:447–455

    Article  Google Scholar 

  2. Badr SA, Ghazy MME, Moghazy RM (2010) Toxicity assessment of cyanobacteria in a wastewater treatment plant, Egypt. J Appl Sci Res 6(10):1511–1516

    CAS  Google Scholar 

  3. Berg K, Skulberg OM, Skulberg R (1987) Effects of decaying toxic blue-green algae on water quality—a laboratory study. Arch Hydrobio 108:549–563

    CAS  Google Scholar 

  4. Berry JP, Gantar M, Gawley RE, Wang M, Rein KS (2004) Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everlades. Comp Biochem Physiol Part C 139:231–238

    Google Scholar 

  5. Bhateja P, Mathur T, Pandya M, Fatma T, Rattan A (2006) Activity of blue green microalgae extracts against in vitro generated Staphylococcus aureus with reduced susceptibility to vancomycin. Fitoterapia 77:233–235

    Article  PubMed  CAS  Google Scholar 

  6. Boon N, De Windt W, Verstraete W, Top EM (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16 S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112

    PubMed  CAS  Google Scholar 

  7. Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol 62:4086–4094

    PubMed  CAS  Google Scholar 

  8. Bourne DG, Riddles P, Jones GJ, Smith W, Blakeley RL (2001) Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ Toxicol 16:523–534

    Article  PubMed  CAS  Google Scholar 

  9. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  10. Campbell DL, Lawton LA, Beattie KA, Codd GA (1994) Comparative assessment of the specificity of the brine shrimp and Microtox assay to hepatotoxic (microcystin-LR containing) cyanobacteria. Environ Toxicol Water Qual 9:71–77

    Article  CAS  Google Scholar 

  11. Casamatta DA, Wickstrom CE (2000) Sensitivity of two disjunt bacterioplankton communities to exudates from de cyanobacterium Microcystis aeruginosa kutzing. Microb Ecol 41:64–73

    Google Scholar 

  12. Chen J, Song L, Dai J, Gan N, Liu Z (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and Rice (Oryza sativa L.). Toxicon 43:393–400

    Article  PubMed  CAS  Google Scholar 

  13. Chen X, Yang X, Yang L, Xiao B, Wu X, Wang J, Wan H (2010) An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Res 44:1884–1892

    Article  PubMed  CAS  Google Scholar 

  14. Christoffersen K, Lyck S, Winding A (2002) Microbial activity and bacterial community structure during degradation of microcystins. Aquat Microbial Ecol 27(2):125–136

    Article  Google Scholar 

  15. Chrost RJ (1975) Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystems. Acta Microbiol Pol B 7:125–133

    PubMed  CAS  Google Scholar 

  16. Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  17. Colombo V, Vieira AAH, Moraes G (2004) Activity of glycosidases from freshwater heterotrophic microorganisms on the degradation of extracellular polysaccharide produced by Anabaena spiroides (Cyanobacteria). Braz J Microbiol 35:110–116

    Article  CAS  Google Scholar 

  18. Cousins IT, Bealing DJ, James HA, Sutton A (1996) Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Res 30(2):481–485

    Article  CAS  Google Scholar 

  19. Crites R, Tchobanoglous G (1998) Small and decentralized wastewater management systems. McGraw Hill, Inc, NY

    Google Scholar 

  20. Dahms H, Ying X, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a mini-review. Biofouling 22:317–327

    Article  PubMed  CAS  Google Scholar 

  21. Dive D, Robert S, Angrand E, Bel C, Bonnemain H, Brun L, Demarque Y, Le Du A, El Bouhouti R, Fourmaux MN, Guery L, Hanssens O, Murat M (1989) A bioassay using the measurement of the growth inhibition of a ciliate protozoan: Colpidium campylum stokes. Hydrobiologia 188(189):181–188

    Article  Google Scholar 

  22. Dumas A, Laliberté G, Lessard P, de la Noüe J (1997) Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri. Aquacult Eng 17:57–68

    Article  Google Scholar 

  23. Fabro L, Baker M, Duivenvoorden L, Pegg G, Shiel R (2001) The effects of the ciliate Paramecium cf. caudatum Ehrenberg on toxin producing Cylindrospermopsis isolated from the Fitzroy river, Australia. Environ Toxicol 16:489–497

    Article  Google Scholar 

  24. Finlay BJ, Esteban GF (1998) Freshwater protozoa: biodiversity and ecological function. Biodivers Conserv 7:1163–1186

    Article  Google Scholar 

  25. Furtado ALFF, Calijuri MC, Lorenzi AS, Honda RY, Genuario DB, Fiore MF (2009) Morphological and molecular caracterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystis production. Hydrobiologia 627:195–209

    Article  CAS  Google Scholar 

  26. Fyda J, Fiałkowska E, Pajdak-Stós A (2010) Dynamics of cyanobacteria–ciliate grazer activity in bitrophic and tritrophic microcosms. Aquat Microb Ecol 59:45–53

    Article  Google Scholar 

  27. Grabow WOK, Du Randt WC, Prozesky OW, Scott WE (1982) Microcystis aeruginosa toxin: cell toxicity, hemolysis, and mutagenicity assays. Appl Environ Microbiol 43:1425–1433

    PubMed  CAS  Google Scholar 

  28. Harada K, Kondo F, Lawton L (1999) Laboratory analysis of cyanotoxins. In Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. Chorus, I e Bartram, J. (Eds). World Health Organization, F & FN Spon, London

  29. Harada K-I, Imanishi S, Kato H, Masayoshi M, Ito E, Tsuji K (2004) Isolation of Adda from microcystin-LR by microbial degradation. Toxicon 44(1):107–109

    Article  PubMed  CAS  Google Scholar 

  30. Ho L, Meyn T, Keegan A, Hoefel D, Brookes J, Saint CP, Newcombe G (2006) Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Res 40:768–774

    Article  PubMed  CAS  Google Scholar 

  31. Ho L, Hoefel D, Saint CP, Newcombe G (2007) Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res 41:4685–4695

    Article  PubMed  CAS  Google Scholar 

  32. Hu LB, Yang JD, Zhou W, Yin YF, Chen J, Shi ZQ (2009) Isolation of a Methylobacillus sp that degrades microcystin toxins associated with cyanobacteria. New Biotechnol 26:205–211

    Article  CAS  Google Scholar 

  33. Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. J Nat Prod 60:724–726

    Article  PubMed  CAS  Google Scholar 

  34. Ishii H, Nishijima M, Abe T (2004) Characterization of degradation process of cyanobacterial hepatotoxins by a Gram-negative aerobic bacterium. Water Res 38:2667–2676

    Article  PubMed  CAS  Google Scholar 

  35. Jaki B, Orjala J, Burgi H-R, Sticher O (1999) Biological screening of cyanobacteria for antimicrobial and molluscicidal activity, brine shrimp lethality, and cytotoxicity. Pharm Biol 37:138–143

    Article  Google Scholar 

  36. Jones GJ, Orr PT (1994) Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res 28(4):871–876

    Article  CAS  Google Scholar 

  37. Kirkwood AE, Nalewaijko C, Fulthorpe RR (2001) The occurrence of cyanobacteria in pulp and paper waste-treatment systems. Rev Can Microbiol 47:761–766

    Article  CAS  Google Scholar 

  38. Kirkwood AE (2003) The role of cyanobacteria in pulp and paper waste-treatment systems. PhD thesis. Universidade de Toronto.

  39. Kirkwood AE, Nalewaijko C, Fulthorpe RR (2005) The impacts of cyanobacteria on pulp-and-paper wastewater toxicity and biodegradation of wastewater contaminants. Can J Microbiol 51:531–540

    Article  PubMed  CAS  Google Scholar 

  40. Kirkwood AE, Nalewaijko C, Fulthorpe RR (2006) The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants. Microb Ecol 51:4–12

    Article  PubMed  CAS  Google Scholar 

  41. Kolmonen E, Sivonen K, Rapala J, Haukka K (2004) Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat Microb Ecol 36:201–211

    Article  Google Scholar 

  42. Kreitlow S, Mundt S, Lindequist U (1999) Cyanobacteria—a potential source of new biologically active substances. J Biotechnol 70:61–63

    Article  PubMed  CAS  Google Scholar 

  43. Kuiper-Goodman T, I Falconer & J Fitzgerald (1999) Human Health Aspects. In Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Chorus, I. e Bartram, J. (Eds). World Health Organization, E & FN Spon, London.

  44. Lam AKY, Fedorak PM, Prepas EE (1995) Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay. Environ Sci Technol 29:242–246

    Article  CAS  Google Scholar 

  45. Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390

    Article  Google Scholar 

  46. Madoni P, Romeo MG (2006) Acute toxicity of heavy metals towards freshwater ciliated protists. Environ Pollut 141:1–7

    Article  PubMed  CAS  Google Scholar 

  47. Manage PM, Pathmalal M, Edwards C, Singh BK, Lawton LA (2009) Isolation and identification of novel microcystin-degrading bacteria. Appl Environ Microbiol 75:6924–6928

    Article  PubMed  CAS  Google Scholar 

  48. Maršálek B, Bláha L (2004) Comparasion of 17 biotests for detection of cyanobacterial toxicity. Environ Toxicol 19:310–317

    Article  PubMed  Google Scholar 

  49. Martins J, Peixe L, Vasconcelos V (2010) Cyanobacteria and bacteria co-occurrence in a Wastewater Treatment Plant (WWTP): absence of allelopathic effects. Wat Sci Technol 62(8):1954–1962

    Article  CAS  Google Scholar 

  50. Metcalf, Eddy, Inc (1991) Wastewater engineering—treatment, disposal and reuse, 3rd edn. McGraw Hill, Inc, NY

    Google Scholar 

  51. Moikeha SN, Chu GW (1971) Dermatitis-producing alga Lyngbya majuscula Gomont in Hawaii. II. Biological properties of the toxin factor. J Phycol 7:8–13

    CAS  Google Scholar 

  52. Motta, M, Pons, MN, Vivier, H, Amaral, AL, Ferreira, EC, Roche, N and Mota, M (2001) The study of protozoan population in wastewater treatment plants by image analysis. Braz J Chem Eng 18, nbr1.

  53. Mundt S, Kreitlow S, Nowotny A, Effmert U (2001) Biochemical and pharmacological investigations of selected cyanobacteria. Int J Hyg Environ Health 203:327–334

    Article  PubMed  CAS  Google Scholar 

  54. Mur, LR, Skulberg, OM and Utkilen, H (1999) Cyanobacteria in the Environment. In Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Chorus, I. e Bartram, J. (Eds). World Health Organization, E & FN Spon, London.

  55. Nalecz-Jawcki G (2004) Spirotox—Spirostomum ambiguum acute toxicity test—10 years of experience. Environ Toxicol 19:359–364

    Article  Google Scholar 

  56. Oberholster PJ, Botha A-M, Cloete TE (2006) Use of molecular markers as indicators for winter zooplankton grazing on toxic benthic cianobactéria colonies in an urban Colorado Lake. Harmful Algae 5:705–716

    Article  CAS  Google Scholar 

  57. Oudra B, Loudiki M, Vasconcelos V, Sabour B, Sbiyyaa B, Oufdou Kh, Mezrioui N (2002) Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in Morocco. Environ Toxicol 17:32–39

    Article  PubMed  CAS  Google Scholar 

  58. Oufdou, K, Mezrioui, N, Oudra, B, Barakate, M, Loudiki, M (1998) Effect of extracellular and endocellular products from cyanobacterium Synechocystis sp., on the growth of some sanitation system bacteria. Arch. Hydrobiol (Suppl. 125); 139–148.

    Google Scholar 

  59. Oufdou K, Mezrioui N, Oudra B, Loudiki M, Barakate M, Sbiyyaa B (2001) Bioactive compounds from Pseudanabaena species (Cyanobacteria). Microbios 106:21–29

    PubMed  CAS  Google Scholar 

  60. Østensvik Ø, Skulberg OM, Undertal B, Hormazabal V (1998) Antibacterial proprerties of extracts from selected planktonic freswater cyanobacteria—a comparative study of bacterial bioassays. J Appl Microbiol 84:1117–1124

    Article  PubMed  Google Scholar 

  61. Pauli W, Jax K, Berger S (2001) In: Beek B (ed) the handbook of environmental chemistry, vol. 2, part K: biodegradation and persistence. Springer, Heidelberg

    Google Scholar 

  62. Pajdak-Stós A, Fiałkowska E, Fyda J (2004) Vulnerability of Nostoc muscorum agardh (Cyanophyceae) motile hormogonia to ciliate grazing. J Phycol 40:271–274

    Article  Google Scholar 

  63. Park H-D, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16:337–343

    Article  PubMed  CAS  Google Scholar 

  64. Peavy HS, Rowe DR, Tchobanoglous G (1985) Environmental engineering. McGraw-Hill, N.Y

    Google Scholar 

  65. Ploutno A, Carmeli S (2000) Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. J Nat Prod 63:1524–1526

    Article  PubMed  CAS  Google Scholar 

  66. Ransom RE, Nevad TA, Meier PG (1978) Acute toxicity of the blue-green algae to the protozoan Puramecium caudatum. J Phycol 14:114–116

    Article  Google Scholar 

  67. Rapala J, Lahti K, Sivonen K, Niemala SI (1994) Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-A. Lett Appl Microbiol 19(6):423–428

    Article  PubMed  CAS  Google Scholar 

  68. Raposo MF (2005) Evaluation of the microalgal and cyanobacterial communities in the aerobic treatment tanks of a WWTP. Detection and quantification of toxins. MSc thesis. Universidade do Porto

  69. Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6:159–176

    Article  CAS  Google Scholar 

  70. Saito K, Konno A, Ishii H, Saito H, Nishida F, Abe T, Chen C (2001) Nodularin Här: a new nodularin from Nodularia. J Nat Prod 64(1):139–141

    Article  PubMed  CAS  Google Scholar 

  71. Saito T, Okana K, Park H-D, Itayama T, Inamori Y, Neilan BA, Burns BP, Sugiura N (2003) Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229(2):271–276

    Article  PubMed  CAS  Google Scholar 

  72. Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HAS, Hendry RD (1999) Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395(396):161–172

    Article  Google Scholar 

  73. Singh S, Kates BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  PubMed  CAS  Google Scholar 

  74. Sivonen K, Jones G (1999) Cyanobacterial Toxins. In Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Chorus, I. e Bartram, J. (Eds). World Health Organization, E & FN Spon, London.

  75. Skulberg OM (2000) Microalgae as a source of bioactive molecules—experience from cyanophyte research. J Appl Phycol 12:341–348

    Article  CAS  Google Scholar 

  76. Stangenberg M (1968) Toxic effects of Microcystis aeruginosu Kg. extracts on Daphnia longispina O.F. Muller and Eucypris virens Jurine. Hydrobiologia 32:81–87

    Article  Google Scholar 

  77. Surono IS, Collado MC, Salminen S, Meriluoto J (2008) Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food Chem Toxicol 46:502–507

    Article  PubMed  CAS  Google Scholar 

  78. Svrcek C, Smith DW (2004) Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. J Environ Eng Sci 3:155–185

    Article  CAS  Google Scholar 

  79. Tarczynska M, Nalecz-Jawecki G, Romanowska-Duda Z, Sawicki J, Beattie K, Codd G, Zalewski M (2001) Tests for the toxicity assessment of cyanobacterial bloom samples. Environ Toxicol 16:383–390

    Article  PubMed  CAS  Google Scholar 

  80. Twagilimana L, Bohatier J, Groliere C-A, Bonnemoy F, Sargos D (1998) A new low-cost microbiotest with the protozoan Spirostomum teres: culture conditions and assessment of sensitivity of the ciliate to 14 pure chemicals. Ecotoxicol Environ Saf 41:231–244

    Article  PubMed  CAS  Google Scholar 

  81. Uma L, Selvaraj K, Manjula R, Subramanian G, Nagarkar S (2002) Biotechnological potential of marine cyanobacteria in wastewater treatment: disinfection of raw sewage by Oscillatoria willei BDU130511. J Microbio Biotechnol 12(4):699–701

    Google Scholar 

  82. Valdor R, Aboal M (2007) Effects of living cyanobacterial extracts and pure microcystins on growth and utrastructure of microalgae and bacteria. Toxicon 49:769–779

    Article  PubMed  CAS  Google Scholar 

  83. Valeria AM, Ricardo EJ, Stephan P, Alberto WD (2006) Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba—Argentina). Biodegradation 17:447–455

    Article  PubMed  Google Scholar 

  84. van Apeldoorn ME, van Egmond HP, Speijers GJA, Bakker GJI (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60

    Article  PubMed  Google Scholar 

  85. Vasconcelos V (2001) Cyanobacteria toxins: diversity and ecological effects. Limnetica 20:45–58

    Google Scholar 

  86. Vasconcelos VM, Pereira E (2001) Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res 35:1354–1357

    Article  PubMed  CAS  Google Scholar 

  87. Volk R-B, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186

    Article  PubMed  CAS  Google Scholar 

  88. Ward CJ, Codd GA (1999) Comparative toxicity of four microcystins of different hydrophobicities to the protozoan, Tetrahymena pyriformis. J Appl Microbiol 86:874–882

    Article  PubMed  CAS  Google Scholar 

  89. WHO-World Health Organization (1998) Guidelines for drinking water quality. Addendum to volume 2, health criteria and other supporting information, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  90. Yang Z, Kong F, Shi X, Cao H (2006) Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563:225–230

    Article  Google Scholar 

  91. Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic Cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health Part B 8:1–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vítor M. Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, J., Peixe, L. & Vasconcelos, V.M. Unraveling Cyanobacteria Ecology in Wastewater Treatment Plants (WWTP). Microb Ecol 62, 241–256 (2011). https://doi.org/10.1007/s00248-011-9806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9806-y

Keywords

Navigation