Skip to main content
Log in

Bacterial Communities Associated with the Digestive Tract of the Predatory Ground Beetle, Poecilus chalcites, and Their Modification by Laboratory Rearing and Antibiotic Treatment

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Direct cell counts estimated 1.5 × 108 bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p < 0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  PubMed  CAS  Google Scholar 

  3. Babendreier D, Joller D, Romeis J, Bigler F, Widmer F (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 59:600–610

    Article  PubMed  CAS  Google Scholar 

  4. Bourtzis K, Miller TA (2003) Insect Symbiosis. CRC, Boca Raton

    Google Scholar 

  5. Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Article  PubMed  CAS  Google Scholar 

  6. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300

    Article  PubMed  CAS  Google Scholar 

  7. Cazemier AE, Hackstein JHP, Op den Camp HJM, Rosenberg J, van der Drift C (1997) Bacteria in the intestinal tract of different species of Arthropods. Microb Ecol 33:189–197

    Article  PubMed  Google Scholar 

  8. Cook DM, Henricksen ED, Upchurch R, Peterson JBD (2007) Isolation of polymer-degrading bacteria and characterization of the hindgut bacterial community from the detritus-feeding larvae of Tipula abdominalis (Diptera: Tipulidae). Appl Environ Microbiol 73:5683–5686

    Article  PubMed  CAS  Google Scholar 

  9. Czarnetzki AB, Tebbe CC (2004) Diversity of bacteria associated with Collembola—cultivation-independent survey based on PCR-amplified 16S rRNA genes. FEMS Microbiol Ecol 49:217–227

    Article  CAS  PubMed  Google Scholar 

  10. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Ann Rev Entomol 49:71–92

    Article  CAS  Google Scholar 

  11. Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342

    Article  PubMed  CAS  Google Scholar 

  12. Dunn AK, Stabb EV (2005) Culture-independent characterization of the microbiota of the ant lion Mymeleon mobilis (Neuroptera:Mrymeleontidae). Appl Environ Microbiol 71:8784–8794

    Article  PubMed  CAS  Google Scholar 

  13. Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668

    Article  PubMed  CAS  Google Scholar 

  14. Egert M, Stingl U, Bruun DL, Pommerenke B, Brune A, Friedrich MW (2005) Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol 71:4556–4566

    Article  PubMed  CAS  Google Scholar 

  15. Engebretson JJ, Moyer CL (2003) Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl Environ Microbiol 69:4823–4829

    Article  PubMed  CAS  Google Scholar 

  16. Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69:7216–7223

    Article  PubMed  CAS  Google Scholar 

  17. Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescent microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  CAS  Google Scholar 

  18. Honek A, Martinkova Z, Saska P (2005) Post-dispersal predation of Taraxacum officinale (dandelion) seed. J Ecol 93:345–352

    Article  Google Scholar 

  19. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  CAS  PubMed  Google Scholar 

  20. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  21. Lane DR (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  22. Li H, Medina F, Vinson SB, Coates CJ (2005) Isolation, characterization, and molecular identification of bacteria from the red imported fire ant (Solenopsis invicta) midgut. J Invertebr. Pathol 89:203–209

    Article  PubMed  CAS  Google Scholar 

  23. Liu W-T, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  24. Lovei GI, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Ann Rev Entomol 41:231–256

    CAS  Google Scholar 

  25. Lundgren JG (2005) Ground beetle (Coleoptera: Carabidae) ecology: their function and diversity within natural agricultural habitats. Am Entomol 51:218

    Google Scholar 

  26. Lundgren JG, Duan JJ, Paradise MS, Wiedenmann RN (2005) Rearing protocol and life history traits of Poecilus chalcites (Coleoptera: Carabidae) in the laboratory. J Entomol Sci 40:126–135

    Google Scholar 

  27. Lundgren JG, Shaw JT, Zaborski ER, Eastman CE (2006) The influence of organic transition systems on beneficial ground-dwelling arthropods and predation of insects and weed seeds. Renew Agric Food Sys 21:227–237

    Google Scholar 

  28. Lundgren JG, Lehman RM, Chee-Sanford JA (2007) Bacterial communities within digestive tracts of ground beetles (Coleptera: Carabidae). Annals Entomol Soc Am 100:275–282

    Article  CAS  Google Scholar 

  29. Lundgren JG (2008) Relationships of natural enemies and non-prey foods. Springer, Dordrecht

    Google Scholar 

  30. Mohr KI, Tebbe CC (2005) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272

    Article  CAS  Google Scholar 

  31. Perner J (2003) Sample size and quality of indication—a case study using ground-dwelling arthropods as indicators in agricultural systems. Agric Ecosyst Environ 98:125–132

    Article  Google Scholar 

  32. Saska P, van der Werf W, de Vries E, Westerman P (2008) Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation on weed seeds. Bull Entomol Res 98:179–191

    Article  Google Scholar 

  33. Schloss PD, Delalibera I, Handelsman J, Raffa KF (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol 35:625–629

    Article  Google Scholar 

  34. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    Article  PubMed  CAS  Google Scholar 

  35. Schubert C (2006) Can biofuels finally take center stage? Nature Biotech 24:777–784

    Article  CAS  Google Scholar 

  36. Shearin AF, Reberg-Horton SC, Gallandt ER (2007) Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ Entomol 36:1140–1146

    Article  PubMed  CAS  Google Scholar 

  37. Speksnijder AGCL, Kowalchuk GA, DeJong S, Kline E, Stephen JR, Laanbroek HJ (2001) Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl Environ Microbiol 67:469–472

    Article  PubMed  CAS  Google Scholar 

  38. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  39. White SS, Renner KA, Menalled FD, Landis DA (2007) Feeding preferences of weed seed predators and effect on weed emergence. Weed Sci 55:606–602

    Article  CAS  Google Scholar 

  40. Yu Y, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Technical assistance is acknowledged by ARS employees Amy Christie, Janet Fergen, Kendra Jensen Kallemeyn, Lacey Kruse, Matt Jones, and Malissa Mayer; Dave Cummings (Point Loma University) and Andrew Shewmaker (Idaho National Laboratories) provided a copy of their software “Grouper”. The manuscript was improved by comments contributed by Wade French and Louis Hesler (USDA-ARS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Lehman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehman, R.M., Lundgren, J.G. & Petzke, L.M. Bacterial Communities Associated with the Digestive Tract of the Predatory Ground Beetle, Poecilus chalcites, and Their Modification by Laboratory Rearing and Antibiotic Treatment. Microb Ecol 57, 349–358 (2009). https://doi.org/10.1007/s00248-008-9415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9415-6

Keywords

Navigation