Skip to main content
Log in

Interactions of Chaperonin with a Weakly Active Anthranilate Synthase from the Aphid Endosymbiont Buchnera aphidicola

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The endosymbiotic bacterium Buchnera provides its aphid host with essential amino acids. Buchnera is typical of intracellular symbiotic and parasitic microorganisms in having a small effective population size, which is believed to accelerate genetic drift and reduce the stability of gene products. It is hypothesized that Buchnera mitigates protein instability with an increased production of the chaperonins GroESL. In this paper, we report the expression and functional analysis of trpE, a plasmid-borne fast-evolving gene encoding the tryptophan biosynthesis enzyme anthranilate synthase. We overcame the problem of low enzyme stability by using an anthranilate synthase-deficient mutant of E. coli as the expression host and the method of genetic complementation for detection of the enzyme activity. We showed that the Buchnera anthranilate synthase was only weakly active at the temperature of 26°C but became inactive at the higher temperatures of 32°C and 37°C and that the coexpression with chaperonin genes groESL of E. coli enhanced the function of the Buchnera enzyme. These findings are consistent with the proposed role of groESL in the Buchnera–aphid symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Baumann P, Moran NA, Baumann L (2006) Bacteriocyte-associated endosymbionts of insects. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, NY

    Google Scholar 

  2. Birkle LM, Douglas AE (1999) Low genetic diversity among pea aphid (Acyrthosiphon pisum) biotypes of different plant affiliations. Heredity 82:605–612

    Article  PubMed  Google Scholar 

  3. Birkle LM, Minto LB, Douglas AE (2002) Relating genotype and phenotype for tryptophan synthesis in an aphid–bacterial symbiosis. Physiol Entomol 27:302–306

    Article  CAS  Google Scholar 

  4. Birkle LM, Minto LB, Walters KFA, Douglas AE (2004) Microbial genotype and insect fitness in an aphid–bacterial symbiosis. Funct Ecol 18:598–604

    Article  Google Scholar 

  5. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Wiley & Sons, New York

  6. Castanié MP, Berges H, Oreglia J, Prere MF, Fayet O (1997) A set of pBR322-compatible plasmids allowing the testing of chaperone-assisted folding of proteins overexpressed in Escherichia coli.. Anal Biochem 254:150–152

    Article  PubMed  Google Scholar 

  7. Clark MA, Moran NA, Baumann P (1999) Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol 16:1586–1598

    PubMed  CAS  Google Scholar 

  8. Crawford IP (1989) Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu Rev Microbiol 43:567–600

    Article  PubMed  CAS  Google Scholar 

  9. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  10. Douglas AE (1998) Nutritional interactions in insect–microbial symbiosis: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  PubMed  CAS  Google Scholar 

  11. Douglas AE, Prosser WA (1992) Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. J Insect Physiol 38:565–568

    Article  CAS  Google Scholar 

  12. Dunbar HE, Wilson ACC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5:e96

    Article  PubMed  Google Scholar 

  13. Fares MA, Ruiz-González MX, Moya A, Elena SF, Barrio E (2002) Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417:398

    Article  PubMed  CAS  Google Scholar 

  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  15. Herbeck JT, Funk DJ, Degnan PH, Wernegreen JJ (2003) A conservative test of genetic drift in the endosymbiotic bacterium Buchnera: slightly deleterious mutations in the chaperonin groEL. Genetics 165:1651–1660

    PubMed  CAS  Google Scholar 

  16. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  PubMed  CAS  Google Scholar 

  17. Komaki K, Ishikawa H (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol 48:717–722

    Article  PubMed  CAS  Google Scholar 

  18. Lai C-Y, Baumann L, Baumann P (1994) Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci USA 91:3819–3823

    Article  PubMed  CAS  Google Scholar 

  19. Lai C-Y, Baumann P, Moran N (1996) The endosymbiont (Buchnera sp.) of the aphid Diuraphis noxia contains plasmids consisting of trpEG and tandem repeats of trpEG pseudogenes. Appl Environ Microbiol 62:332–339

    PubMed  CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  21. Latorre A, Gil R, Silva FJ, Moya A (2005) Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola. Heredity 95:339–347

    Article  PubMed  CAS  Google Scholar 

  22. Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143

    Article  PubMed  CAS  Google Scholar 

  23. Moran NA (1996) Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878

    Article  PubMed  CAS  Google Scholar 

  24. Ohtaka C, Nakamura H, Ishikawa H (1992) Structures of chaperonins from an intracellular symbiont and their functional expression in Escherichia coli groE mutants. J Bacteriol 174:1869–1874

    PubMed  CAS  Google Scholar 

  25. Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A (2006) A small microbial genome: the end of a long symbiotic relationship? Science 314:312–313

    Article  PubMed  Google Scholar 

  26. Plague GR, Dale C, Moran NA (2003) Low and homogeneous copy number of plasmid-borne symbiont genes affecting host nutrition in Buchnera aphidicola of the aphid Uroleucon ambrosiae. Mol Ecol 12:1095–1100

    Article  PubMed  CAS  Google Scholar 

  27. Rouhbakhsh D, Lai C-Y, von Dohlen CD, Clark MA, Baumann L, Baumann P, Moran NA, Voegtlin DJ (1996) The tryptophan biosynthetic pathway of aphid endosymbionts (Buchnera): genetics and evolution of plasmid-associated anthranilate synthase (trpEG) within the aphididae. J Mol Evol 42:414–421

    Article  PubMed  CAS  Google Scholar 

  28. Rouhbakhsh D, Clark MA, Baumann L, Moran NA, Baumann P (1997) Evolution of the tryptophan biosynthetic pathway in Buchnera (aphid endosymbionts): studies of plasmid-associated trpEG within the genus Uroleucon. Mol Phylog Evol 8:167–176

    Article  CAS  Google Scholar 

  29. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  30. Maisnier-Patin S, Roth JR, Fredriksson Å, Nyström T, Berg OG, Andersson DI (2005) Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 37:1376–1379

    Article  PubMed  CAS  Google Scholar 

  31. Sun Z, Scott DJ, Lund PA (2003) Isolation and characterization of mutants of GroEL that are fully functional as single rings. J Mol Biol 332:715–728

    Article  PubMed  CAS  Google Scholar 

  32. Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson AS, Wernegreen JJ, Sandström JP, Moran NA, Andersson SGE (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  PubMed  CAS  Google Scholar 

  33. van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586

    Article  PubMed  Google Scholar 

  34. Wernegreen JJ, Moran NA (1999) Evidence for genetic drift in endosymbionts (Buchnera): analysis of protein-coding genes. Mol Biol Evol 16:83–97

    PubMed  CAS  Google Scholar 

  35. Wernegreen JJ, Moran NA (2000) Decay of mutualistic potential in aphid endosymbionts through silencing of biosynthetic loci: Buchnera of Diuraphis. Proc R Soc Lond B 267:1423–1431

    Article  CAS  Google Scholar 

  36. Wernegreen JJ, Moran NA (2001) Vertical transmission of biosynthetic plasmids in aphid endosymbionts (Buchnera). J Bacteriol 183:785–790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science and Technology Program for Agricultural Biotechnology grant 93-2317-B-018-001 from the National Science Council of Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yung Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CY., Lee, CY., Wu, HC. et al. Interactions of Chaperonin with a Weakly Active Anthranilate Synthase from the Aphid Endosymbiont Buchnera aphidicola . Microb Ecol 56, 696–703 (2008). https://doi.org/10.1007/s00248-008-9389-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9389-4

Keywords

Navigation