Skip to main content
Log in

Environmental Inactivation of Cryptosporidium parvum Oocysts in Waste Stabilization Ponds

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The survival of Cryptosporidium parvum oocysts in a waste stabilization pond system in northwestern Spain and the effects of sunlight and the depth and type of pond on oocyst viability were evaluated using an assay based on the exclusion or inclusion of two fluorogenic vital dyes, 4′,6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI). All tested factors had significant effects (P < 0.01) over time on C. parvum oocyst viability. Sunlight exposure was the most influential factor for oocyst inactivation. A 40% reduction was observed after 4 days exposure to sunlight conditions compared with dark conditions. The type of pond also caused a significant reduction in C. parvum oocyst viability (P < 0.01). Inactivation rates reflected that the facultative pond was the most aggressive environment for oocysts placed both at the surface (presence of sunlight) and at the bottom (absence of sunlight) of the pond, followed by the maturation pond and the anaerobic pond. The mean inactivation rates of oocysts in the ponds ranged from 0.0159 to 0.3025 day−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. APHA, AWWA, EFA (1998) Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, USA

  2. Araki S, Martín-Gómez S, Bécares E, De Luis Calabuig E, Rojo-Vazquez F (2001) Effect of high-rate algal ponds on viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol 67:3322–3324

    Article  PubMed  CAS  Google Scholar 

  3. Campbell AT, Robertson LJ, Smith HV (1992) Viability of Cryptosporidium parvum oocysts, correlation of in vitro excystation with inclusion/exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58:3488–3493

    PubMed  CAS  Google Scholar 

  4. Campbell AT, Robertson LJ, Smith HV (1993) Detection of oocysts of Cryptosporidium by enhanced chemiluminescence. J Microbiol Methods 17:297–303

    Article  Google Scholar 

  5. Craik SA, Weldon D, Finch GR, Bolton JR, Belosevic M (2001) Inactivation of Cryptosporidium parvum oocysts using medium and low-pressure ultraviolet irradiation. Water Res 35:1387–1398

    Article  PubMed  CAS  Google Scholar 

  6. Curtis TP, Mara DD, Silva SA (1992a) Influence of pH, oxygen, and humic substances on ability of sunlight to damage faecal coliforms in waste stabilization pond water. Appl Environ Microbiol 58:1335–1343

    PubMed  CAS  Google Scholar 

  7. Curtis TP, Mara DD, Silva SA (1992b) The effect of sunlight on faecal coliforms in ponds: implications for research and design. Water Sci Technol 26(7,8):1729–1738

    CAS  Google Scholar 

  8. Davies-Colley RJ, Donnison AM, Speed DJ (1997) Sunlight wavelengths inactivating faecal indicator micro-organisms in waste stabilization ponds. Water Sci Technol 35(111):219–225

    Article  CAS  Google Scholar 

  9. Davies-Colley RJ, Donnison AM, Speed DJ, Ross CM, Nagels JW (1999) Inactivation of faecal indicator micro-organisms in waste stabilization ponds: interactions of environmental factors with sunlight. Water Res 33:1220–1230

    Article  CAS  Google Scholar 

  10. Davies-Colley RJ, Donnison AM, Speed DJ (2000) Towards a mechanistic understanding of pond disinfection. Water Sci Technol 42(10–11):149–158

    CAS  Google Scholar 

  11. Drozd C, Schwartzbrod J (1996) Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum. Appl Environ Microbiol 62:1227–1232

    PubMed  CAS  Google Scholar 

  12. Fayer R (1994) Effect of high temperature on infectivity of Cryptosporidium parvum oocysts in water. Appl Environ Microbiol 60:2732–2735

    PubMed  CAS  Google Scholar 

  13. Fayer R, Nerad T (1996) Effects of low temperatures on viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol 62:1431–1433

    PubMed  CAS  Google Scholar 

  14. Fayer R, Graczyk TK, Cranfield MR, Trout JM (1996) Gaseous disinfection of Cryptosporidium parvum oocysts. Appl Environ Microbiol 62:908–3909

    Google Scholar 

  15. Fayer R, Trout JM, Jenkins MC (1998) Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. J Parasitol 84:1165–1169

    Article  PubMed  CAS  Google Scholar 

  16. Fayer R, Morgan U, Upton JS (2000) Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol 30:1305–1322

    Article  PubMed  CAS  Google Scholar 

  17. Gold D, Smith HV (2001) Pathogenic protozoa and drinking water. In: Ziglio G, Palumbo F (eds) Detection methods for algae, protozoa and helminths. Wiley, Chichester, UK, pp 143–162, Chapter 12

    Google Scholar 

  18. Grimason AM, Smith HV, Thitai WN, Smith PG, Jackson MH, Girdwood RWA (1993) Occurrence and removal of Cryptosporidium spp. oocysts and Giardia spp. cysts in Kenyan waste stabilisation ponds. Water Sci Technol 27:97–104

    CAS  Google Scholar 

  19. Huffman DE, Slifko TR, Salisbury K, Rose JB (2000) Inactivation of bacteria, virus and Cryptosporidium by a point-of-use device using pulsed broad spectrum white light. Water Res 34(9):2491–2498

    Article  CAS  Google Scholar 

  20. Jenkins MB, Anguish LJ, Bowman DD, Walker MJ, Ghiorse WC (1997) Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts. Appl Environ Microbiol 63:3844–3850

    PubMed  CAS  Google Scholar 

  21. Jenkins MB, Bowman DD, Ghiorse WC (1998) Inactivation of Cryptosporidium parvum oocysts by ammonia. Appl Environ Microbiol 64:784–788

    PubMed  CAS  Google Scholar 

  22. Jenkins MB, Bowman DD, Fogarty EA, Ghiorse WC (2002) Cryptosporidium parvum oocyst inactivation in three soil types at various temperatures and water potentials. Soil Biol Biochem 34:1101–1109

    Article  CAS  Google Scholar 

  23. Johnson AM, Linden K, Ciociola KM, De Leon R, Widmer G, Rochelle PA (2005) UV inactivation of Cryptosporidium hominis as measured in cell culture. Appl Environ Microbiol 71:2800–2802

    Article  PubMed  CAS  Google Scholar 

  24. Korich DG, Mead JR, Madore MS, Sinclair NA, Sterling CR (1990) Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Appl Environ Microbiol 56:1423–1428

    PubMed  CAS  Google Scholar 

  25. Mayo AW (1989) Effect of pond depth on bacterial mortality rate. J Environ Eng 115(5):964–977

    CAS  Google Scholar 

  26. Mayo AW (1995) Modelling coliform mortality in waste stabilization ponds. J Environ Eng 121:140–152

    Article  CAS  Google Scholar 

  27. McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA (2006) Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 101:453–463

    Article  PubMed  CAS  Google Scholar 

  28. Moeller JR, Calkins J (1980) Bactericidal agents in wastewater lagoons and lagoon design. Joumal of the Water Pollution Control Federation 52:2442–2451

    Google Scholar 

  29. Morita S, Namikoshi A, Hirata T, Oguma K, Katayama H, Ohgaki S, Motoyama N, Fujiwara M (2002) Efficacy of UV irradiation in inactivating Cryptosporidium parvum oocysts. Appl Environ Microbiol 68:5387–5393

    Article  PubMed  CAS  Google Scholar 

  30. Nasser AM, Zaruk N, Tenenbaum L, Netzan Y (2003) Comparative survival of Cryptosporidium, Coxsackievirus A9 and Escherichia coli in stream, brackish and sea waters. Water Sci Technol 47(3):91–96

    PubMed  CAS  Google Scholar 

  31. Qin D, Bliss PJ, Barnes D, FitzGerald PA (1991) Bacterial (total coliform) die-off in maturation ponds. Water Sci Tech 23:1525–1534

    CAS  Google Scholar 

  32. Reinoso R, Bécares E, Smith HV (2007) Effect of various environmental factors on the viability of Cryptosporidium parvum oocysts. J Appl Microbiol DOI 10.1111/j.1365-2672.2007.03620.x

  33. Robertson LJ, Campbell AT, Smith HV (1992) Survival of Cryptosporidium parvum oocysts under various environmental pressures. Appl Environ Microbiol 58:3494–3500

    PubMed  CAS  Google Scholar 

  34. Robertson LJ, Gjerde BK (2006) Fate of Cryptosporidium oocysts and Giardia cysts in the Norwegian aquatic environment over winter. Microb Ecol 52:597–602

    Article  PubMed  CAS  Google Scholar 

  35. Smith HV, Grimason AM (2003) Giardia and Cryptosporidium in water and wastewater. In: Mara D, Horan N (eds) The handbook of water and wastewater microbiology. Elsevier Science, Amsterdam, pp 619–781

    Google Scholar 

  36. Smith HV, Nichols RAB, Grimason AM (2005) Cryptosporidium excystation and invasion—getting to the guts of the matter. Trends Parasitol 21:133–142

    Article  PubMed  CAS  Google Scholar 

  37. StatSoft, Inc (2001) STATISTICA 6.0. Tulsa (OK), USA

  38. Stott R, May E, Mara DD (2003) Parasite removal by natural wastewater treatment systems: performance of waste stabilisation ponds and constructed wetlands. Water Sci Technol 48(2):97–104

    PubMed  CAS  Google Scholar 

  39. Walker M, Leddy K, Hagar E (2001) Effects of combined water potential and temperature stresses on Cryptosporidium parvum oocysts. Appl Environ Microbiol 67:5526–5529

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Castilla and León Institute for Agricultural Technology (ITACyL) under contract LE-02-2005 entitled “Health Risks in Using Waste Water in Agriculture”. We gratefully acknowledge the contribution of Professor A.M. Grimason, Department of Civil Engineering, University of Strathclyde for constructive comments and critical review of the manuscript. We would also like to thank Natalia Reinoso for her technical assistance during this project. R. Reinoso was funded by the University of León.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Reinoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinoso, R., Bécares, E. Environmental Inactivation of Cryptosporidium parvum Oocysts in Waste Stabilization Ponds. Microb Ecol 56, 585–592 (2008). https://doi.org/10.1007/s00248-008-9378-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9378-7

Keywords

Navigation