Skip to main content
Log in

Distribution of Tetracycline and Streptomycin Resistance Genes and Class 1 Integrons in Enterobacteriaceae Isolated from Dairy and Nondairy Farm Soils

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The prevalence of selected tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae (n = 80) isolated from dairy farm soil and nondairy soils was evaluated. Among 56 bacteria isolated from dairy farm soils, 36 (64.3%) were resistant to tetracycline, and 17 (30.4%) were resistant to streptomycin. Lower frequencies of tetracycline (9 of 24 or 37.5%) and streptomycin (1 of 24 or 4.2%) resistance were observed in bacteria isolated from nondairy soils. Bacteria (n = 56) isolated from dairy farm soil had a higher frequency of tetracycline resistance genes including tetM (28.6%), tetA (21.4%), tetW (8.9%), tetB (5.4%), tetS (5.4%), tetG (3.6%), and tetO (1.8%). Among 24 bacteria isolated from nondairy soils, four isolates carried tetM, tetO, tetS, and tetW in different combinations; whereas tetA, tetB, and tetG were not detected. Similarly, a higher prevalence of streptomycin resistance genes including strA (12.5%), strB (12.5%), ant(3″) (12.5), aph(6)-1c (12.5%), aph(3″) (10.8%), and addA (5.4%) was detected in bacteria isolated from dairy farm soils than in nondairy soils. None of the nondairy soil isolates carried aadA gene. Other tetracycline (tetC, tetD, tetE, tetK, tetL, tetQ, and tetT) and streptomycin (aph(6)-1c and ant(6)) resistance genes were not detected in both dairy and nondairy soil isolates. A higher distribution of multiple resistance genes was observed in bacteria isolated from dairy farm soil than in nondairy soil. Among 36 tetracycline- and 17 streptomycin-resistant isolates from dairy farm soils, 11 (30.6%) and 9 (52.9%) isolates carried multiple resistance genes encoding resistance to tetracycline and streptomycin, respectively, which was higher than in bacteria isolated from nondairy soils. One strain each of Citrobacter freundii and C. youngae isolated from dairy farm soils carried class 1 integrons with different inserted gene cassettes. Results of this small study suggest that the presence of multiple resistance genes and class 1 integrons in Enterobacteriaceae in dairy farm soil may act as a reservoir of antimicrobial resistance genes and could play a role in the dissemination of these antimicrobial resistance genes to other commensal and indigenous microbial communities in soil. However, additional longer-term studies conducted in more locations are needed to validate this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Agerso Y, Sengelov G, Jensen LB (2004) Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. Environ Int 30:117–122

    Article  PubMed  CAS  Google Scholar 

  2. Agerso Y, Sandvang D (2005) Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol 71:794–7947

    Article  CAS  Google Scholar 

  3. Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32

    Article  PubMed  CAS  Google Scholar 

  4. Bryan A, Shapir N, Sadowsky MJ (2004) Frequency and distribution of tetracycline resistance genes in generally diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl Environ Microbiol 70:2503–2507

    Article  PubMed  CAS  Google Scholar 

  5. Burgos JM, Ellington BA, Varela MF (2005) Presence of multidrug-resistant enteric bacteria in dairy farm topsoil. J Dairy Sci 88:1391–1398

    Article  PubMed  CAS  Google Scholar 

  6. Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502

    Article  PubMed  CAS  Google Scholar 

  7. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, application, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  PubMed  CAS  Google Scholar 

  8. Clinical Laboratory Standards Institute (2004) Performance standards for antimicrobial susceptibility testing - fourteenth informational supplement M2-A8 and M7-A6. Wayne, PA, USA

    Google Scholar 

  9. DeFlaun MF, Levy SB (1989) Genes and their varied hosts, p. I-32. In: Levy, SB, Miller, RV (Ed.) Gene transfer in the environment. McGraw-Hill, New York, NY

    Google Scholar 

  10. de Freitas JR, Schoenau JJ, Boyetchko SM, Cyrenne SA (2003) Soil microbial populations, community composition, and activity as affected by repeated applications of hog and cattle manure in eastern Saskatchewan. Can J Microbiol 49:538–548

    Article  PubMed  Google Scholar 

  11. Fluit AC, Schmitz FJ (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 18:761–770

    Article  PubMed  CAS  Google Scholar 

  12. Food and Drug Administration (2003) National Antimicrobial Resistance Monitoring Systems 2003: Annual Report (FDA, 2003). http://www.fda.gov/cvm/Documents/NARMSRetailMeatRpt2003.pdf

  13. Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A, Takahashi Y, Torri K, Hasegawa T, Ohta M (2003) Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl Environ Microbiol 69:5339–5342

    Article  CAS  Google Scholar 

  14. Gebreyes WA, Altier C (2002) Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica Serovar Typhimurium isolates from swine. J Clin Microbiol 40:2813–2822

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG, Maurer JJ (2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 45:723–726

    Article  PubMed  CAS  Google Scholar 

  16. Guillaume G, Verbrugge D, Chasseur-Libotte ML, Moens W, Collard JM (2000) PCR typing of tetracycline resistance determinants (TetA-E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol Ecol 32:77–85

    PubMed  CAS  Google Scholar 

  17. Lanz R, Kuhnert P, Boerlin P (2003) Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91:73–84

    Article  PubMed  CAS  Google Scholar 

  18. Lee C, Langlois BE, Dawson KA (1993) Detection of tetracycline resistance determinants in pig isolates from three herds with different histories of antimicrobial exposure. Appl Environ Microbiol 59:1467–1472

    PubMed  CAS  Google Scholar 

  19. Levesque C, Piche L, Larose C, Roy PH (1995) PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 39:185–191

    PubMed  CAS  Google Scholar 

  20. Martinez-Freijo P, Fluit AC, Schmitz F-J, Verhoef J, Jones M (1999) Many class I integrons comprise distinct stable structures occurring in different species of Enterobacteriaceae isolated from widespread geographic regions in Europe. Antimicrob Agents Chemother 43:686–689

    PubMed  CAS  Google Scholar 

  21. Mazel D, Davies J (1999) Antibiotic resistance in microbes. Cell Mol Life Sci 56:742–754

    Article  PubMed  CAS  Google Scholar 

  22. McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34:S93–S106

    Article  PubMed  CAS  Google Scholar 

  23. Mukherjee S, Chakraborty R (2006) Incidence of class I integrons in multiple antibiotic-resistant Gram-negative copiotrophic bacteria from the river Torsa in India. Res Microbiol 157:220–226

    Article  PubMed  CAS  Google Scholar 

  24. Nesvera J, Hochmannova J, Patek M (1998) An integron of class 1 is present on the plasmid pCG4 from Gram-positive bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 169:391–395

    Article  PubMed  CAS  Google Scholar 

  25. Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15:209–215

    Article  PubMed  CAS  Google Scholar 

  26. Osterblad M, Hakanen A, Manninen R, Leistevuo T, Peltonen R, Meurman O, Huovinen P, Kotilainen P (2000) A between-species comparison of antimicrobial resistance in enterobacteria in fecal flora. Antimicrob Agents Chemother 44:1479–1484

    Article  PubMed  CAS  Google Scholar 

  27. Osterblad M, Pensala O, Peterzens M, Heleniusc H, Huovinen P (1999) Antimicrobial susceptibility of Enterobacteriaceae isolated from vegetables. J Antimicrob Chemother 43:503–509

    Article  PubMed  CAS  Google Scholar 

  28. Palmer EL, Teviotdale BL, Jones AL (1997) A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora. Appl Environ Microbiol 63:4604–4607

    PubMed  CAS  Google Scholar 

  29. Roberts MC (2003) Tetracycline therapy: update. Clin Infect Dis 36:462–467

    Article  PubMed  CAS  Google Scholar 

  30. Sengelov G, Agerso Y, Halling-Sorensen B, Baloda SB, Anderson JS, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595

    Article  PubMed  CAS  Google Scholar 

  31. Shaw KJ, Hare R, Sabatelli FJ, Rizzo M, Cramer CA, Naples L (1991) Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob Agents Chemother 35:2253–2261

    PubMed  CAS  Google Scholar 

  32. Smith MS, Yang RK, Knapp CW, Niu Y, Peak N, Hanfelt MM, Galland JC, Graham DW (2004) Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl Environ Microbiol 70:7372–7377

    Article  PubMed  CAS  Google Scholar 

  33. Smith DL, Harris AD, Johnson JA, Silbregeld EK, Morris JG Jr (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA 99:6434–6439

    Article  PubMed  CAS  Google Scholar 

  34. Sundin GW, Bender CL (1996) Molecular analysis of closely-related copper- and streptomycin-resistance plasmids in Pseudomonas syringae pv. syringae. Plasmid 35:98–107

    Article  PubMed  CAS  Google Scholar 

  35. Sundin GW, Monks DE, Bender CL (1995) Distribution of the streptomycin-resistance transposons Tn5393 among phylloplane and soil bacteria from managed agricultural habitats. Can J Microbiol 41:792–799

    Article  PubMed  CAS  Google Scholar 

  36. van Overbeek LS, Wellington EMH, Egan S, Smalla K, Heuer H, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, van Elsas JD (2002) Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol Ecol 42:277–288

    PubMed  Google Scholar 

  37. Villedieu A, Diaz-Torres ML, Hunt N, McNab R, Spratt DA, Wilson M, Mullany P (2003) Prevalence of tetracycline resistance genes in oral bacteria. Antimicrob Agents Chemother 47:878–882

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The University of Tennessee Food Safety Center of Excellence; the Tennessee Agricultural Experiment Station; and The University of Tennessee, College of Veterinary Medicine, Center of Excellence Research program in Livestock Diseases and Human Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Oliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, V., Nam, HM., Sawant, A.A. et al. Distribution of Tetracycline and Streptomycin Resistance Genes and Class 1 Integrons in Enterobacteriaceae Isolated from Dairy and Nondairy Farm Soils. Microb Ecol 55, 184–193 (2008). https://doi.org/10.1007/s00248-007-9266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9266-6

Keywords

Navigation