Skip to main content
Log in

Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metal tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Amoroso, MJ, Schubert, A, Mitscherlich, P, Schumann, P, Kothe, E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40: 295–301

    Article  PubMed  CAS  Google Scholar 

  2. Babich, H, Stotzky, G (1982) Nickel toxicity to microbes: effect of pH and implications for acid rain. Environ Res 29: 335–350

    Article  PubMed  CAS  Google Scholar 

  3. Babich, H, Stotzky, G (1983) Temperature, pH, salinity, hardness, and particulates mediate nickel toxicity to eubacteria, an actinomycete, and yeasts in lake, simulated estuarine, and sea waters. Aquat Toxicol 3: 195–208

    Article  CAS  Google Scholar 

  4. Bitton, G, Garland, E, Kong, IC, Morel, JL, Koopman, B (1996) A direct solid-phase assay for heavy metal toxicity. I. Methodology. J Soil Contam 5: 385–394

    CAS  Google Scholar 

  5. Bitton, G, Jung, K, Koopman, B (1994) Evaluation of a microplate assay specific for heavy metal toxicity. Arch Contam Toxicol 27: 25–28

    Google Scholar 

  6. Bradford, MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analyt Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  7. Dobrindt, U, Hochhut, B, Hentschel, U, Hacker, J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2: 414–424

    Article  PubMed  CAS  Google Scholar 

  8. Evans, AG, Bauer, LR, Haselow, Hayes DW, Martin, HL, McDowell, WL, Picket, JB (1992) Uranium in the Savannah River Site environment. Westinghouse Savannah River Company, Report WSRC-RP-92-315, Aiken, SC

  9. Everis, L, Betts, G (2001) pH stress can cause cell elongation in Bacillus and Clostrdium species: a research note. Food Control 12: 53–56

    Article  Google Scholar 

  10. Fay, W, VanSickle, L, Williams, J (1997) In: Arnett, MW, Mamatey, AR (Eds.) Savannah River Site Environmental Report for 1996, Technical Report WSRC-TR-97-0171, Westinghouse Savannah River Company, Aiken, SC

  11. Ferris, MJ, Muyzer, G, Ward, DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62: 370–378

    Google Scholar 

  12. Giller, KE, Witter, E, McGrath, SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30: 1389–1414

    Article  CAS  Google Scholar 

  13. Grass, G, Fan, B, Rosen, BP, Lemke, K, Schlegal, HG, Rensing, C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183: 2803–2807

    Article  PubMed  CAS  Google Scholar 

  14. Hagedorn, C, Holt, JG (1975) Ecology of soil Arthrobacters in Calrion–Webster toposequences of Iowa. Appl Microbiol 29: 211–218

    PubMed  CAS  Google Scholar 

  15. Hall, TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98

    CAS  Google Scholar 

  16. HazDat (2005) Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA. www.atsdr.cdc.gov/supportdocs/appendix-a.pdf

  17. Hebbeln, P, Eitinger, T (2004) Heterologous production and characterization of bacterial nickel/cobalt permeases. FEMS Microbiol Lett 230: 129–135

    Article  PubMed  CAS  Google Scholar 

  18. Hery, M, Nazaret, S, Jaffre, T, Normand, P, Navarro, E (2003) Adaptation to nickel spiking of bacterial communities in neocaldonian soils. Environ Microbiol 5: 3–12

    Article  PubMed  CAS  Google Scholar 

  19. Higham, DP, Sadler, PJ, Scawen, MD (1985) Cadmium resistance in Pseudomonas putida: growth and uptake of cadmium. J Gen Microbiol 131: 2539–2544

    CAS  Google Scholar 

  20. Idris, R, Trifonova, R, Puschenreiter, M, Wenzel, WW, Sessitsch, A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70: 2667–2677

    Article  PubMed  CAS  Google Scholar 

  21. Isaac, SR, Nair, MA (2005) Biodegradation of leaf litter in the warm humid tropics of Kerala, India. Soil Biol Biochem 37: 1656–1664

    Article  CAS  Google Scholar 

  22. Jackson, DG, Noonkester, JV, Vangelas, KM (2000) Characterization activities to evaluate chlorinated solvent discharges to Tims Branch from the A/M area of the Savannah River Site, Technical Report WSRC-TR-2000-00472, Westinghouse Savannah River Company, Aiken, SC

  23. Li, X, He, Z, Zhou, J (2005) Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res 33: 6114–6123

    Article  PubMed  CAS  Google Scholar 

  24. Liebich, J, Schadt, CW, Chong, SC, He, Z, Rhee, SK, Zhou, J (2006) Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications. Appl Environ Microbiol 72: 1688–1691

    Article  PubMed  CAS  Google Scholar 

  25. Loureiro, S, Ferreira, ALG, Soares, AMVM, Nogueira, AJA (2005) Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere 61: 168–177

    Article  PubMed  CAS  Google Scholar 

  26. Maidak, BL, Cole, JR, Parker, CT Jr, Garrity, GM, Larsen, N, Li, B, Lilburn, TG, McCaughey, MJ, Olsen, GJ, Overbeek, R, Pramanik, S, Schmidt, TM, Tiedje, JM, Woese, CR (1999) A new version of the RDP (ribosomal database project). Nucleic Acids Res 27: 171–173

    Article  PubMed  CAS  Google Scholar 

  27. Margesin, R, Schinner, F (1996) Heavy metal resistant Arthrobacter sp.—a tool for studying conjugational plasmid transfer between gram-negative and gram-positive bacteria. J Basic Microbiol 36: 269–282

    Article  CAS  Google Scholar 

  28. McArthur, JV, Tuckfield, RC (2000) Spatial patterns in antibiotic resistance among stream bacteria: effects of industrial pollution. Appl Environ Microbiol 66: 3722–3726

    Article  PubMed  CAS  Google Scholar 

  29. McCarthy, AJ, Williams, ST (1992) Actinomycetes as agents of biodegradation in the environment—a review. Gene 115: 189–192

    Article  PubMed  CAS  Google Scholar 

  30. Mengoni, A, Barzanti, R, Gonnelli, C, Gennrielli, R, Bazzicalupo, M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3: 691–698

    Article  PubMed  CAS  Google Scholar 

  31. Mergeay, M, Houba, C, Gerits, J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper, and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochim 86: 440–441

    PubMed  CAS  Google Scholar 

  32. Muyzer, G, DeWall, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700

    PubMed  CAS  Google Scholar 

  33. Nies, DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27: 313–319

    Article  PubMed  CAS  Google Scholar 

  34. Nies, D, Mergeay, M, Friedrich, B, Schlegel, HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169: 4865–4868

    PubMed  CAS  Google Scholar 

  35. Nies, D, Nies, A, Chu, L, Silver, S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci 86: 7351–7355

    Article  PubMed  CAS  Google Scholar 

  36. Pickett, JB, Colven, WP, Bledsoe, HW (1987) Environmental information document: M-area settling basic and vicinity, Report DPST-85-703, E. I. du Pont Nemours & Co, Aiken, SC

  37. Rhee, SK, Liu, Z, Wu, L, Chong, SC, Wan, X, Zhou, J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70: 4303–4317

    Article  PubMed  CAS  Google Scholar 

  38. Riley, RG, Zachara, JM, Wobber, FJ (1992) Chemical contamination on DOE lands and selection of contaminated mixtures for subsurface science research, Rep. DOE/ER-0547T, U.S. Department of Energy, Washington, DC

  39. Schlegel, HG, Cosson, JP, Baker, AJM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104: 18–25

    CAS  Google Scholar 

  40. Schmidt, T, Schlegel, HG (1994) Combined nickel–cobalt–cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxydans 31A. J Bacteriol 176: 7045–7054

    PubMed  CAS  Google Scholar 

  41. Schmidt, T, Stoppel, RD, Schlegel, HG (1991) High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Appl Eviron Microbiol 57: 3301–3309

    CAS  Google Scholar 

  42. Silver, S, Phung, LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32: 587–605

    Article  PubMed  CAS  Google Scholar 

  43. Smalla, K, Woeland, G, Buchner, A, Zock, A, Parzy, J, Kaier, S, Roskot, N, Heuer, H, Berg, G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67: 4742–4751

    Article  PubMed  CAS  Google Scholar 

  44. Sowder, AG, Bertsch, PM, Morris, PJ (2003) Partitioning and availability of uranium and nickel in contaminated riparian sediments. J Environ Qual 32: 885–898

    Article  PubMed  CAS  Google Scholar 

  45. Stanier, R, Palleroni, N, Douderouf, M (1966) The aerobic Pseudomonads: a taxonomic study. J Gen Microbiol 43: 159–271

    PubMed  CAS  Google Scholar 

  46. Stepanauskas, R, Gless, T, Jagoe, C, Tuckfield, RC, Lindell, A, McArthur, JV (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol 39: 3671–3678

    Article  PubMed  CAS  Google Scholar 

  47. Stoppel, T, Schlegel, HG (1989) Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol Ecol 62: 315–328

    Article  Google Scholar 

  48. Stoppel, RD, Schlegel, HG (1995) Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl Environ Microbiol 61: 2276–2285

    PubMed  CAS  Google Scholar 

  49. Summers, AO (2002) Generally overlooked fundamental bacterial genetics and ecology. Clin Infect Dis 34: S85–92

    Article  PubMed  CAS  Google Scholar 

  50. Suutari, M, Lignell, U, Hirvonen, MR, Nevalainen, A (2000) Growth pH ranges of Streptomyces spp. ASM News 66: 588–589

    Google Scholar 

  51. Swofford, DL (2002) PAUP* Pylogenetic analysis using parsimony (and other methods), 4.0 ed, Sinaur, Sunderland, MA

  52. Taghavi, S, Delanghe, H, Lodewyckx, C, Mergeay, M, Van der Lelie, D (2001) Nickel-resistance-based minitransposons: new tools for genetic manipulation of environmental bacteria. Appl Environ. Microbiol 67: 1015–1019

    Article  PubMed  CAS  Google Scholar 

  53. Van Nostrand, JD, Khijniak, TV, Sowder, A, Bertsch, PM, Morris, PJ (2005) The effect of pH on the toxicity of nickel and other divalent metals to Burkholderia cepacia PR1301. Environ Toxicol Chem 22: 2742–2750

    Article  Google Scholar 

  54. Warren, R, Hsiao, WWL, Kudo, H, Myhre, M, Dosanjh, M, Petrescu, A, Kobayashi, H, Shimizu, S, Miyauchi, K, Masai, E, Yang, G, Stott, JM, Schein, JE, Shin, H, Khattra, J, Smailus, D, Butterfield, YS, Siddiqui, A, Holt, R, Marra, MA, Jones, SJM, Mohn, WM, Brinkman, FSL, Fukuda, M, Davies, J, Eltis, LD (2004) Functional characterization of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. strain RHA1. J Bacteriol 186: 7783–7795

    Article  PubMed  CAS  Google Scholar 

  55. Wilson, K (1994) Preparation of genomic DNA from bacteria. In: Ausubel, FA, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA Struhl, K (Eds.) Current protocols in molecular biology, John Wiley & Sons, New York, pp 2.4.1–2.4.5

    Google Scholar 

  56. Wireman, J, Liebert, CA, Smith, T, Summers, AO (1997) Association of mercury resistance with antibiotic resistance in the Gram-negative fecal bacteria of primates. Appl Environ Microbiol 63: 4494–4503

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. V. McArthur and A. Lindell, Savannah River Ecology Laboratory, University of Georgia, for performing the antibiotic resistance assays. This research was supported by grants from the EPA/DOE/NSF/ONR Joint Program on Bioremediation administered by the DOE, Office of Biological and Environmental Research (ER62696-1011950-0003828), the DOE Environmental Management Science Program (ER086845-0007743), and by Financial Assistance Award DE-FC09-96SR18546 from the DOE Office of Biological and Environmental Research, Environmental Remediation Sciences Division to the University of Georgia Research Foundation. M.N. was supported by a Medical University of South Carolina doctoral fellowship and J.V.N. was supported by a U.S. Environmental Protection Agency Science to Achieve Results Graduate Fellowship and the Savannah River Ecology Laboratory Graduate Research Participation Program. The microarray experiments were supported by the DOE under the Natural and Accelerated Bioremediation Research Program of the Office of Biological and Environmental Research, Office of Science. Oak Ridge National Laboratory is managed by the University of Tennessee-Battelle LLC for the DOE under contract DE-ACo5-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Nostrand, J.D., Khijniak, T.V., Gentry, T.J. et al. Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments. Microb Ecol 53, 670–682 (2007). https://doi.org/10.1007/s00248-006-9160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9160-7

Keywords

Navigation