Skip to main content
Log in

Single-Cell Raman Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta Metabolic History

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Single-cell Raman microspectroscopy has the potential to report on the whole-cell chemical composition of bacteria, reflecting metabolic status as well as growth history. This potential has been demonstrated through the discriminant functional analysis of Raman spectral profiles (RSP) obtained from the soil and plant-associated bacterium Pseudomonas fluorescens SBW25, grown in vitro using defined media, and in planta using 3-month-old sugar beets (Beta vulgaris var. Roberta). SBW25 in vitro RSP data showed significant variation between those cells grown on different amino acids, sugars, TCA cycle intermediates, rich King's B, and culture media derived from the sugar beet phytosphere. Raman analysis was also able to follow the transition of SBW25 starved of carbon over a period of days, and SBW25 in planta RSP data also showed variation with significant differences between bacteria recovered from soil and the rhizosphere. SBW25 whole-cell chemical composition, and therefore growth and metabolic history, could be interpreted by coanalyzing in vitro and in planta RSP data. SBW25 recovered from the phytosphere was found to be more similar to SBW25 grown in vitro on Fru or Asp, rather than on Glc or Arg, and quite dissimilar to that resulting from carbon starvation. This suggests that SBW25 growth in the phytosphere is generally neither carbon-catabolite-repressed nor carbon-limited. These findings demonstrate that the analysis of single-cell RSP can differentiate between isogenic populations of bacteria with different metabolic histories or after recovery from different parts of their natural environment. In addition, Raman analysis is also capable of providing biologically relevant biochemical inferences, which might then be tested to uncover the mechanistic basis (biochemical–metabolic–genetic) differentiating bacteria growing in complex environments and exposed to different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Andrews, JH, Harris, RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38: 145–180

    Article  PubMed  Google Scholar 

  2. Brehm-Stecher, BF, Johnson, EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 68: 538–559

    Article  PubMed  CAS  Google Scholar 

  3. Byng, GS, Whitaker, RJ, Jensen, RA (1983) Evolution of l-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas. Arch Microbiol 136: 163–168

    Article  PubMed  CAS  Google Scholar 

  4. Calhoun, DH, Jensen, RA (1972) Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa. J Bacteriol 109: 365–372

    PubMed  CAS  Google Scholar 

  5. Collier, DN, Hager, PW, Phibbs, PV (1996) Catabolite repression control in the Pseudomonads. Res Microbiol 147: 551–561

    Article  PubMed  CAS  Google Scholar 

  6. Cunin, R, Glansdorff, N, Piérard, A, Stalon, V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50: 314–352

    PubMed  CAS  Google Scholar 

  7. Derridj, S (1996) Nutrients on the leaf surface. In: Morris, CE, Nicot, PC, Nguyen-The, C (Eds.) Aerial plant surface microbiology. Plenum Press, New York, pp 25–42

    Google Scholar 

  8. DiRusso, CC, Nyström, T (1998) The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Mol Microbiol 27: 1–8

    Article  PubMed  CAS  Google Scholar 

  9. Ellis, RJ, Timms-Wilson, TM, Bailey, MJ (2000) Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol 2: 274–284

    Article  PubMed  CAS  Google Scholar 

  10. Espinosa-Urgel, M, Ramos, J-L (2001) Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl Environ Microbiol 67: 5219–5224

    Article  PubMed  CAS  Google Scholar 

  11. Fiske, MJ, Whitaker, RJ, Jensen, RA (1983) Hidden overflow pathway to l-phenylalanine in Pseudomonas aeruginosa. J Bacteriol 154: 623–631

    PubMed  CAS  Google Scholar 

  12. Gal, M, Preston, GM, Massey, RC, Spiers, AJ, Rainey, PB (2003) Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol 12: 3109–3121

    Article  PubMed  CAS  Google Scholar 

  13. Garbeva, P, van Veen, JA, van Elsas, JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42: 243–270

    Article  PubMed  CAS  Google Scholar 

  14. Goodacre, R, Timmins, EM, Burton, R, Kaderbhai, N, Woodward, AM, Kell, DB, Rooney, PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiol 144: 1157–1170

    Article  PubMed  CAS  Google Scholar 

  15. Hottes, AK, Meewan, M, Yang, D, Arana, N, Romero, P, McAdams, HH, Stephens, C (2004) Transcriptional profiling of Caulobacter cresentus during growth on complex and minimal media. J Bacteriol 186: 1448–1461

    Article  PubMed  CAS  Google Scholar 

  16. Hua, Q, Yang, C, Oshima, T, Mori, H, Shimizu, K (2004) Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Applied Environ Microbiol 70: 2354–2366

    Article  CAS  Google Scholar 

  17. Huang, WE, Griffiths, RI, Thompson, IP, Bailey, MJ, Whiteley, AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76: 4452–4458

    Article  PubMed  CAS  Google Scholar 

  18. Jaques, M-A (1996) The effect of leaf age and position on the dynamics of microbial populations on aerial plant surfaces. In: Morris, CE, Nicot, PC, Nguyen-The, C (Eds.) Aerial Plant Surface Microbiology. Plenum Press, New York, pp 233–248

    Google Scholar 

  19. Jarvis, RM, Goodacre, R (2004) Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76: 40–47

    Article  PubMed  CAS  Google Scholar 

  20. Jarvis, RM, Goodacre, R (2005) Genetic algorithm optimisation for pre-processing and variable selection of spectroscopic data. Bioinformatics 21: 860–868

    Article  PubMed  CAS  Google Scholar 

  21. Kent, AD, Triplett, EE (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56: 211–236

    Article  PubMed  CAS  Google Scholar 

  22. King, EO, Ward, MK, Raney, DC (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301–307

    PubMed  CAS  Google Scholar 

  23. Kinkel, LL (1997) Microbial population dynamics on leaves. Annu Rev Phytopathol 35:327–347

    Article  PubMed  CAS  Google Scholar 

  24. Koch, B, Worm, J, Jensen, LE, Højberg, O, Nybroe, O (2001) Carbon limitation induces σs-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67: 3363–3370

    Article  PubMed  CAS  Google Scholar 

  25. Lessie, TG, Phibbs, PV (1984) Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol 38: 359–388

    Article  PubMed  CAS  Google Scholar 

  26. Leveau, JHJ, Lindow, SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci USA 98: 3446–3453

    Article  PubMed  CAS  Google Scholar 

  27. Lilley, AK, Bailey, MJ (1997) Impact of plasmid pQBR103 acquisition and carriage on the phytosphere fitness of Pseudomonas fluorescens SBW25: burden and benefit. Appl Environ Microbiol 63: 1584–1587

    PubMed  CAS  Google Scholar 

  28. Lindow, SE, Brandl, MT (2003) Microbiology of the Phyllosphere. Appl Environ Microbiol 69: 1875–1883

    Article  PubMed  CAS  Google Scholar 

  29. Lugtenberg, BJ, Dekkers, L, Bloemberg, GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39: 461–490

    Article  PubMed  CAS  Google Scholar 

  30. Lugtenberg, BJ, Kravchenko, LV, Simons, M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1: 439–46

    Article  PubMed  CAS  Google Scholar 

  31. Magee, J (1993) Whole-organism fingerprinting. In: Goodfellow, M, O'Donnell, AG (Eds.) Handbook of New Bacterial Systematics. Harcourt Brace, New York, pp 383–427

    Google Scholar 

  32. Maquelin, K, Kirschner, C, Choo-Smith, LP, van den Braak, N, Endtz, HPh, Naumann, D, Puppels, GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51: 255–271

    Article  PubMed  CAS  Google Scholar 

  33. Mercier, J, Lindow, SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66: 369–374

    PubMed  CAS  Google Scholar 

  34. Miller, WG, Brandl, MT, Quiñones, B, Lindow, SE (2001) Biological sensor for sucrose availability: relative sensitivities of various reporter genes. Appl Environ Microbiol 67: 1308–1317

    Article  PubMed  CAS  Google Scholar 

  35. Morita, RY (1993) Bioavailability of energy and the starvation state. In: Kjelleberg, S. (Ed.) Starvation in Bacteria. Plenum Press, New York, pp 1–53

    Google Scholar 

  36. Naumann, D (2001) FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev 36: 239–298

    Article  CAS  Google Scholar 

  37. Rainey, PR (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1: 243–257

    Article  PubMed  CAS  Google Scholar 

  38. Rainey, PB, Bailey, MJ (1996) Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19: 521–533

    Article  PubMed  CAS  Google Scholar 

  39. Ramos, C, Mølbak, L, Molin, S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66: 801–809

    Article  PubMed  CAS  Google Scholar 

  40. Rentz, JA, Alvarez, PJJ, Schnoor, JL (2004) Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ Microbiol 6: 574–583

    Article  PubMed  Google Scholar 

  41. Sambrook, J, Fritsch, EF, Maniatis, T (1989) Molecular Cloning: A Laboratory Manual, 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  42. Schuster, KC, Reese, I, Urlab, E, Gapes, JR, Lendl, B (2000) Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal Chem 72: 5529–5534

    Article  PubMed  CAS  Google Scholar 

  43. Schuster, KC, Urlaub, E, Gapes, JR (2000b) Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J Microbiol Methods 42: 29–38

    Article  PubMed  CAS  Google Scholar 

  44. Shapiro, HM (2000) Microbial analysis at the single-cell level: tasks and techniques. J Microbiol Methods 42: 3–16

    Article  PubMed  CAS  Google Scholar 

  45. Shen, H, Keen, NT (1993) Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J Bacteriol 175: 5916–5924

    PubMed  CAS  Google Scholar 

  46. Silby, MW, Levy, SB (2004) Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol 186: 7411–7419

    Article  PubMed  CAS  Google Scholar 

  47. Sonawane, A, Klöppner, U, Derst, C, Röhm, K-H (2003) Utilization of acidic amino acids and their amides by pseudomonads: role of periplasmic glutaminase–asparaginase. Arch Microbiol 179: 151–159

    PubMed  CAS  Google Scholar 

  48. Sonawane, A, Klöppner, U, Hövel, S, Völker, U, Röhm, K-H (2003b) Identification of Pseudomonas proteins co-ordinately induced by acidic amino acids and their amides: a two-dimensional electrophoresis study. Microbiology 149: 2909–2918

    Article  PubMed  CAS  Google Scholar 

  49. Takai, Y, Masuko, T, Takeuchi, H (1997) Lipid structure of cytotoxic granules in living human killer T lymphocytes studied by Raman microspectroscopy. Biochim Biophys Acta 1335: 199–208

    PubMed  CAS  Google Scholar 

  50. Tao, H, Bausch, C, Richmond, C, Blattner, FR, Conway, T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181: 6425–6440

    PubMed  CAS  Google Scholar 

  51. Thomas, GJ (1999) Raman spectroscopy of protein and nucleic acid assemblies. Annu Rev Biophys Biomol Struct 28: 1–27

    Article  PubMed  CAS  Google Scholar 

  52. Thompson, IP, Bailey, MJ, Ellis, RJ, Lilley, AK, McCormack, PJ, Purdy, KJ, Rainey, PB (1995) Short-term community dynamics in the phyllosphere microbiology of field-grown sugar beet. FEMS Microbiol Ecol 16: 205–212

    Article  CAS  Google Scholar 

  53. Unge, A, Tombolini, R, Mølbak, L, Jansson, JK (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp–luxAB marker system. Appl Environ Microbiol 65: 813–821

    PubMed  CAS  Google Scholar 

  54. Uzunbajakava, N, Lenferink, A, Kraan, Y, Volokhina, E, Vrensen, G, Greve, J, Otto, C (2003) Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys J 84: 3968–3981

    Article  PubMed  CAS  Google Scholar 

  55. Uzunbajakava, N, Lenferink, A, Kraan, Y, Willekens, B, Vrensen, G, Greve, J, Otto, C (2003b) Nonresonant Raman imaging of protein distribution in single human cells. Biopolymers 72: 1–9

    Article  PubMed  CAS  Google Scholar 

  56. Van Overbeek, LS, Eberl, L, Givskov, M, Molin, S, van Elsas, JD (1995) Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Appl Environ Microbiol 61: 4202–4208

    PubMed  Google Scholar 

  57. Van Overbeek, LS, van Elsas, JD (1995) Root exudates-induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Appl Environ Microbiol 61: 890–898

    PubMed  CAS  Google Scholar 

  58. Vílchez, S, Molina, L, Ramos, C, Ramos, JL (2000) Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol 182: 91–99

    Article  PubMed  Google Scholar 

  59. Walker, TS, Bais, HP, Grotewold, E, Vivanco, JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132: 44–51

    Article  PubMed  CAS  Google Scholar 

  60. Wilson, M, Lindow, SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60: 4468–4477

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Andrew Knowles and Simon FitzGerald from HORIBA Jobin-Yvon Ltd. UK for supplying the Raman confocal microscope and technical advice, and to Roy Goodacre and Roger Jarvis, who provided the GA code and advice for statistical analysis. Finally, we acknowledge Julie Stansfield for her kind help in growing the sugar beets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Spiers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W.E., Bailey, M.J., Thompson, I.P. et al. Single-Cell Raman Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta Metabolic History. Microb Ecol 53, 414–425 (2007). https://doi.org/10.1007/s00248-006-9138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9138-5

Keywords

Navigation