Skip to main content
Log in

Hemolytic and Nonhemolytic Enterotoxin Genes are Broadly Distributed among Bacillus thuringiensis Isolated from Wild Mammals

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The presence of cytotoxin K (cytK), nonhemolytic (NHE), and hemolytic (HBL) enterotoxin genes was investigated in 74 Bacillus thuringiensis strains recovered from the intestines of wild mammals from northeast Poland, using polymerase chain reaction amplification and Southern hybridization. All the isolates harbored genes coding for toxin(s) that could cause diarrhea. The B. thuringiensis strains containing the nhe genes were found more frequently (nheA 100%, nheB 77%, nheC 96%) than those with the hblACD (74%) and cytK (73%) genes. The presence/absence of the nheA, hblA, and cytK genes was confirmed in all of the B. thuringiensis strains by Southern hybridization. Interestingly, these experiments also indicated that the nheA locus is located on a more variable chromosome region compared with hblA and, to a lesser degree, cytK. Detection of the 41-kDa component of NHE enterotoxin by the TECRA assay revealed various protein levels by B. thuringiensis strains. These results indicate the existence of environmental B. thuringiensis strains bearing the potential virulence arsenal for the production of diarrheal toxins, and emphasize the importance of small animals in the spread of B. cereus–like enterotoxin genes in nature. However, further investigation is needed to clarify any possible involvement of environmental B. thuringiensis strains in human health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Agata, N, Masashi, M, Ohta, M, Suwan, S, Ohtani, I, Isobe, M (1994) A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in Hep-2 cells. FEMS Microbiol Lett 121: 31–34

    PubMed  CAS  Google Scholar 

  2. Aronson, AI, Shai, Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195: 1–8

    Article  PubMed  CAS  Google Scholar 

  3. Ash, C, Collins, MD (1992) Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol Lett 94: 75–80

    Article  CAS  Google Scholar 

  4. Beecher, DJ, Schoeni, JL, Wong, ACL (1995) Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63: 4423–4428

    PubMed  CAS  Google Scholar 

  5. Bickley, J, Owen, RJ (1995) Preparation of bacterial genomic DNA. In: Howard J, Whitecombe DM (Eds.) Diagnostic Bacteriology Protocols, Humana Press, Totowa, NJ, pp 141–147

    Chapter  Google Scholar 

  6. Bourque, SN, Valero, JR, Lavoie, MC, Levesque, RC (1995) Comparative analysis of the 16S-23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Appl Environ Microbiol 61: 1623–1626

    PubMed  CAS  Google Scholar 

  7. Carlson, CR, Johansen, T, Kolstø, A-B (1996) The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of Bacillus cereus ATCC 14579. FEMS Microbiol Lett 141: 163–167

    Article  PubMed  CAS  Google Scholar 

  8. Damgaard, PH, Larsen, HD, Hansen, BM, Bresciani, J, Jørgensen, K (1996) Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett Appl Microbiol 23: 146–150

    Article  PubMed  CAS  Google Scholar 

  9. Dierick, K, Van Coillie, E, Swiecicka, I, Meyfroidt, G, Devlieger, H, Meulemans, A, et al. (2005) Fatal family outbreak of Bacillus cereus—associated food poisoning. J Clin Microbiol 43: 4277–4279

    Article  PubMed  Google Scholar 

  10. Drobniewski, FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6: 324–338

    PubMed  CAS  Google Scholar 

  11. Fagerlund, A, Ween, O, Lund, T, Hardy, SP, Granum, PE (2004) Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150: 2689–2697

    Article  PubMed  CAS  Google Scholar 

  12. Gaviria Rivera, AM, Granum, PE, Priest, FG (2000) Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol Lett 190: 151–155

    Article  PubMed  CAS  Google Scholar 

  13. Granum, PE, Lund, T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157: 223–228

    Article  PubMed  CAS  Google Scholar 

  14. Granum, PE, O'Sullivan, K, Lund, T (1999) The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177: 225–229

    PubMed  CAS  Google Scholar 

  15. Granum, PE (2001) Bacillus cereus. In: Doyle, MP (Ed.) Food Microbiology: Fundamentals and Frontiers, ASM Press, Herndon, VA, pp 373–381

    Google Scholar 

  16. Guinebretière, M-H, Broussolle, V, Nguyen-The Ch (2002) Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol 40: 3053–3056

    Article  PubMed  CAS  Google Scholar 

  17. Hansen, BM, Hendriksen, NB (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol 67: 185–189

    Article  PubMed  CAS  Google Scholar 

  18. Helgason, E, Okstad, OA, Caugant, DA, Johansen, HA, Fouet, A, Mock, M, Hegna, I, Kolstø, A-B (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 6: 2627–2630

    Article  Google Scholar 

  19. Jensen, GB, Larsen, P, Jacobsen, BL, Madsen, B, Smidt, L, Andrup, L (2002) Bacillus thuringiensis in fecal samples from greenhouses workers after exposure to B. thuringiensis-based pesticides. Appl Environ Microbiol 68: 4900–4905

    Article  PubMed  CAS  Google Scholar 

  20. Kotiranta, A, Lounatmaa, K, Haapasalo, M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2: 189–198

    Article  PubMed  CAS  Google Scholar 

  21. Lindbäck, T, Fagerlund, A, Rødland, S, Granum, PE (2004) Characterisation of the Bacillus cereus Nhe enterotoxin. Microbiology 150: 3959–3967

    Article  PubMed  CAS  Google Scholar 

  22. Lund, T, Granum, PE (1996) Characterization of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett 141: 151–156

    Article  PubMed  CAS  Google Scholar 

  23. Lund, T, De Buyser, M-L, Granum, PE (2000) A new cytotoxin from Bacillus cereus that cause necrotic enteritis. Mol Microbiol 38: 254–261

    Article  PubMed  CAS  Google Scholar 

  24. Michelet, N, Granum, PE, Mahillon, J (2006) Bacillus cereus enterotoxins, bi- and tri-component cytolysins and other haemolysins. In: Alouf J, Popoff, MR (Eds.) The Comprehensive Sourcebook of Bacterial Toxins, Academic Press, London, pp 779–790

    Google Scholar 

  25. Perani, M, Bishop, AH, Vaid, A (1998) Prevalence of β-exotoxin, diarrhoeal toxin and specific δ-endotoxin in natural isolates of Bacillus thuringiensis. FEMS Microbiol Lett 160: 55–60

    PubMed  CAS  Google Scholar 

  26. Priest, FG (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick, R (Eds.) Bacillus subtilis and other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, ASM Press, Washington, pp 3–16

    Google Scholar 

  27. Prüß, BM, Dietrich, R, Nibler, B, Märtlbauer, E, Scherer, S (1999) The haemolytic enterotoxin HBL is broadly distributed among species of the B. cereus group. Appl Environ Microbiol 65: 5436–5442

    PubMed  Google Scholar 

  28. Rosenquist, H, Smidt, L, Andersen, SR, Jensen, GB, Wilcks, A (2005) Occurrence and significance of Bacillus cereus and B. thuringiensis in ready-to-eat food. FEMS Microbiol Lett 250: 129–136

    Article  PubMed  CAS  Google Scholar 

  29. Ryan, PA, Macmillan, JD, Zilinskas, BA (1997) Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J Bacteriol 179: 2551–2556

    PubMed  CAS  Google Scholar 

  30. Sambrook, J, Russell, DW (2001) Molecular Cloning. Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  31. Schnepf, E, Crickmore, N, Van Rie, J, Lereclus, D, Baum, J, Feitelson, J, et al. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  32. Swiecicka, I, Fiedoruk, K, Bednarz, G (2002) The occurrence and properties of Bacillus thuringiensis from free-living animals. Lett Appl Microbiol 34: 194–198

    Article  PubMed  CAS  Google Scholar 

  33. Swiecicka, I, Mahillon, J (2006) Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol Ecol 40: 171–179

    Google Scholar 

  34. Yuan, Z, Hansen, BM, Andrup, L, Eilenberg, J (2002) Detection of enterotoxin genes in mosquito-larvicidal Bacillus species. Curr Microbiol 45: 221–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Swiecicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swiecicka, I., Van der Auwera, G.A. & Mahillon, J. Hemolytic and Nonhemolytic Enterotoxin Genes are Broadly Distributed among Bacillus thuringiensis Isolated from Wild Mammals. Microb Ecol 52, 544–551 (2006). https://doi.org/10.1007/s00248-006-9122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9122-0

Keywords

Navigation