Skip to main content

Advertisement

Log in

Microbial Community Structure in Three Deep-Sea Carbonate Crusts

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Carbonate crusts in marine environments can act as sinks for carbon dioxide. Therefore, understanding carbonate crust formation could be important for understanding global warming. In the present study, the microbial communities of three carbonate crust samples from deep-sea mud volcanoes in the eastern Mediterranean were characterized by sequencing 16S ribosomal RNA (rRNA) genes amplified from DNA directly retrieved from the samples. In combination with the mineralogical composition of the crusts and lipid analyses, sequence data were used to assess the possible role of prokaryotes in crust formation. Collectively, the obtained data showed the presence of highly diverse communities, which were distinct in each of the carbonate crusts studied. Bacterial 16S rRNA gene sequences were found in all crusts and the majority was classified as α-, γ-, and δ- Proteobacteria. Interestingly, sequences of Proteobacteria related to Halomonas and Halovibrio sp., which can play an active role in carbonate mineral formation, were present in all crusts. Archaeal 16S rRNA gene sequences were retrieved from two of the crusts studied. Several of those were closely related to archaeal sequences of organisms that have previously been linked to the anaerobic oxidation of methane (AOM). However, the majority of archaeal sequences were not related to sequences of organisms known to be involved in AOM. In combination with the strongly negative δ 13C values of archaeal lipids, these results open the possibility that organisms with a role in AOM may be more diverse within the Archaea than previously suggested. Different communities found in the crusts could carry out similar processes that might play a role in carbonate crust formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aharon, P (1994) Carbon and oxygen isotope tracers of submarine hydrocarbon emissions: Northern Gulf of Mexico. Israel J Earth Sci 43: 157–164

    CAS  Google Scholar 

  2. Aloisi, G, Pierre, C, Rouchy, JM, Foucher, JP, Woodside, J (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett 184: 321–338

    Article  CAS  Google Scholar 

  3. Aloisi, G, Bouloubassi, I, Heijs, SK, Pancost, RD, Pierre, C, Sinninghe, Damsté, JS, Gottschal, JC, Forney, LJ, Rouchy, J (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203: 195–203

    Article  CAS  Google Scholar 

  4. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Article  PubMed  CAS  Google Scholar 

  5. Barnes, RO, Goldberg, ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4: 297–300

    Article  CAS  Google Scholar 

  6. Boetius, A, Ravenschlag, K, Schubert, CJ, Rickert, D, Widdel, F, Gieseke, A, Amann, R, Jorgensen, BB, Witte, U, Pfannkuche, O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626

    Article  PubMed  CAS  Google Scholar 

  7. Burton, EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105: 163–179

    Article  CAS  Google Scholar 

  8. Chandler, DP, Li, SM, Spadoni, CM, Drake, GR, Balkwill, DL, Fredrickson, JK, Brockman, FJ (1997) A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep subsurface sediment. FEMS Microbiol Ecol 23: 131–144

    Article  CAS  Google Scholar 

  9. Coleman, ML (1993) Microbial processes: controls on the shape and composition of carbonate concretions. Mar Geol 113: 127–140

    Article  CAS  Google Scholar 

  10. Costello, AM, Lidstrom, ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65: 5066–5074

    PubMed  CAS  Google Scholar 

  11. DeLong, EF (2003) Oceans of Archaea. ASM News 69: 503–511

    Google Scholar 

  12. Deppenmeier, U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71: 223–283

    PubMed  CAS  Google Scholar 

  13. Diekmann, OE, Bak, RPM, Tonk, L, Stam, WT, Olsen, JL (2002) No habitat correlation of zooxanthellae in the coral genus Madracis on a Curaçao reef. Mar Ecol Prog Ser 227: 221–232

    Google Scholar 

  14. Doronina, NV, Trotsenko, YA, Tourova, TP (2000) Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50: 1849–1859

    PubMed  CAS  Google Scholar 

  15. Girguis, PR, Orphan, VJ, Hallam, SJ, DeLong, EF (2003) Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol 69: 5472–5482

    Article  PubMed  CAS  Google Scholar 

  16. Gray, ND, Head, IM (2001) Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3: 481–492

    Article  PubMed  CAS  Google Scholar 

  17. Greinert, J, Bohrmann, G, Elvert, M (2002) Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850 m water depth. Int J Earth Sci 91: 698–711

    Article  CAS  Google Scholar 

  18. Hansen, LB, Finster, K, Fossing, H, Iversen, N (1998) Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquat Microb Ecol 14: 195–204

    Google Scholar 

  19. Hanson, RS, Hanson, TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2): 439–471

    PubMed  CAS  Google Scholar 

  20. Harder, J (1997) Anaerobic methane oxidation by bacteria employing C-14-methane uncontaminated with C-14-carbon monoxide. Mar Geol 137: 13–23

    Article  CAS  Google Scholar 

  21. Hinrichs, KU, Hayes, JM, Sylva, SP, Brewer, PG, DeLong, EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398: 802–805

    Article  PubMed  CAS  Google Scholar 

  22. Hinrichs, KU, Summons, RE, Orphan, VJ, Sylva, SP, Hayes, JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31: 1685–1701

    Article  CAS  Google Scholar 

  23. Hoehler, TM, Alperin, MJ, Albert, DB, Martens, CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cy 8: 451–463

    Article  CAS  Google Scholar 

  24. Hoehler, TM, Alperin, MJ, Albert, DB, Martens, CS (2001) Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38: 33–41

    Article  CAS  Google Scholar 

  25. Holmes, AJ, Owens, NJ, Murrell, JC (1995) Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology 141: 1947–1955

    Article  PubMed  CAS  Google Scholar 

  26. Hopmans, EC, Schouten, S, Pancost, RD, van der Meer, MJT, Sinninghe, Damsté, JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14: 585–589

    Article  PubMed  CAS  Google Scholar 

  27. Inagaki, F, Takai, K, Komatsu, T, Sakihama, Y, Inoue, A, Horikoshi, K (2002) Profile of microbial community structure and presence of endolithic microorganisms inside a deep-sea rock. Geomicrobiol J 19: 535–552

    Article  CAS  Google Scholar 

  28. Kato, C, Nogi, Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35: 223–230

    Article  PubMed  CAS  Google Scholar 

  29. Lein, A, Pimenov, N, Guillou, C, Martin, JM, Lancelot, C, Rusanov, I, Yusupov, S, Miller, Y, Ivanov, M (2002) Seasonal dynamics of the sulphate reduction rate on the north-western Black Sea shelf. Estuar Coast Shelf Sci 54: 385–401

    Article  CAS  Google Scholar 

  30. Lein, AY, Ivanov, MV, Pimenov, NV, Gulin, MB (2002) Geochemical peculiarities of the carbonate constructions formed during microbial oxidation of methane under anaerobic conditions. Microbiology 71: 78–90

    Article  CAS  Google Scholar 

  31. Lein, AY, Pimenov, NV, Savvichev, AS, Pavlova, GA, Vogt, PR, Bogdanov, YA, Sagalevich, AM, Ivanov, MV (2000) Methane as a source of organic matter and carbon dioxide of carbonates at a cold seep in the Norway sea. Geochem Int 38: 232–245

    Google Scholar 

  32. Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar, Buchner, A, Lai, T, Steppi, S, Jobb, G, Forster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, Konig, A, Liss, T, Lussmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke, M, Ludwig, T, Bode, A, Schleifer, KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371

    Article  PubMed  CAS  Google Scholar 

  33. MEDINAUT, MEDINETH Shipboard Scientific Parties, Aloisi, G, Asjes, S, Bakker, K, Bakker, M, Charlou, J-L, De Lange, G, Donval, J-P, Fiala-Medioni, A, Foucher, J-P, Haanstra, R, Haese, R, Heijs, S, Henry, P, Huguen, C, Jelsma, B, de Lint, S, van der Maarel, M, Mascle, J, Muzet, S, Nobbe, G, Pancost, R, Pelle, H, Pierre, C, Polman, W, de Senerpont, Domis, L, Sibuet, M, Woodside, J, Zitter, T (2000) Linking Mediterranean brine pools and mud volcanism. Eos Trans AGU 81: 625, 631–633

    Google Scholar 

  34. Michaelis, W, Seifert, R, Nauhaus, K, Treude, T, Thiel, V, Blumenberg, M, Knittel, K, Gieseke, A, Peterknecht, K, Pape, T, Boetius, A, Amann, R, Jorgensen, BB, Widdel, F, Peckmann, J, Pimenov, NV, Gulin, MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297: 1013

    Article  PubMed  CAS  Google Scholar 

  35. Morita, RY (1980) Calcite precipitation by marine bacteria. Geomicrobiol J 2: 63–82

    Article  CAS  Google Scholar 

  36. Orphan, VJ, Hinrichs, KU, Ussler, W III, Paull, CK, Taylor, LT, Sylva, SP, Hayes, JM, DeLong, EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67: 1922–1934

    Article  PubMed  CAS  Google Scholar 

  37. Orphan, VJ, House, CH, Hinrichs, KU, McKeegan, KD, DeLong, EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99: 7663–7668

    Article  PubMed  CAS  Google Scholar 

  38. Ouverney, CC, Fuhrman, JA (2000) Marine planktonic archaea take up amino acids. Appl Environ Microbiol 66: 4829–4833

    Article  PubMed  CAS  Google Scholar 

  39. Pancost, RD, Damste, JSS, de Lint, S, van der Maarel, MJEC, Gottschal, JC (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66: 1126–1132

    Article  PubMed  CAS  Google Scholar 

  40. Petit, JR, Jouzel, J, Raynaud, D, Barkov, NI, Barnola, J-M, Basile, I, Chappellaz, J, Davis, M, Delaygue, G, Delmotte, M, Kotlyakov, VM, Legrand, M, Lipenkov, VY, Lorius, C, Pépin, L, Ritz, C, Saltzman, E, Stievenard, M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436

    Article  CAS  Google Scholar 

  41. Pimenov, NV, Rusanov, II, Poglazova, MN, Mityushina, LL, Sorokin, DYu, Khmelenina, VN, Trotsenko, YuA (1997) Coral-like structures at methane seeps in the Black Sea. Microbiology 66: 354–360

    CAS  Google Scholar 

  42. Purdy, KJ, Munson, MA, Cresswell, MT, Nedwell, DB, Embley, TM (2003) Use of 16S rRNA-targeted oligonucleotide probes to investigate function and phylogeny of sulphate-reducing bacteria and methanogenic archaea in a UK estuary. FEMS Microbiol Ecol 44: 361–371

    Article  CAS  Google Scholar 

  43. Reeburgh, WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28: 337–344

    Article  CAS  Google Scholar 

  44. Ritger, S, Carson, B, Suess, E (1987) Methane-derived authigenic carbonates formed by subduction induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98: 147–156

    Article  CAS  Google Scholar 

  45. Rivadeneyra, MA, Delgado, G, Ramos-Cormenzana, A, Delgado, R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149: 277–287

    Article  PubMed  CAS  Google Scholar 

  46. Schoell, M (1983) Genetic characterisation of natural gases. AAPG Bull 67: 2225–2238

    Article  CAS  Google Scholar 

  47. Teske, A, Hinrichs, KU, Edgcomb, V, Vera Gomez, A, Kysela, D, Sylva, SP, Sogin, ML, Jannasch, HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68: 1994–2007

    Article  PubMed  CAS  Google Scholar 

  48. Thomsen, TR, Finster, K, Ramsing, NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67: 1646–1656

    Article  PubMed  CAS  Google Scholar 

  49. Torsvik, V, Øvreås, L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5: 240–245

    Article  PubMed  CAS  Google Scholar 

  50. Valentine, DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Anton Leeuwenhoek Int J G 81: 271–282

    Article  CAS  Google Scholar 

  51. Valentine, DL, Reeburgh, WS (2000) New perspectives on anaerobic methane oxidation: minireview. Environ Microbiol 2: 477

    Article  PubMed  CAS  Google Scholar 

  52. Van de Peer, Y, De Wachter, R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comp Appl Biosci 10: 569–570

    PubMed  Google Scholar 

  53. Vasconcelos, C, McKenzie, JA, Rujic, D, Tien, AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377: 220–222

    Article  CAS  Google Scholar 

  54. Vetriani, C, Jannasch, HW, MacGregor, BJ, Stahl, DA, Reysenbach, AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65: 4375–4384

    PubMed  CAS  Google Scholar 

  55. Wolda, H (1981) Similarity indices, sample size and diversity. Oecologia 50: 296–302

    Article  Google Scholar 

  56. Wuchter, C, Schouten, S, Boschker, HTS, Sinninghe Damste, JS (2003) Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol Lett 219: 203–207

    Article  PubMed  CAS  Google Scholar 

  57. Zehnder, AJB, Brock, TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137: 420–432

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Samples of carbonate crusts were obtained during the French–Dutch Medinaut expedition, an integrated geological, geochemical, and biological study of mud volcanism and fluid seepage in the eastern Mediterranean Sea. We thank the officers and crew of the R/V Nadir and the Nautile submersible for their helpful cooperation during seagoing activities. We thank Stephen Bent (University of Idaho, Moscow, ID, USA) for help with the Morisita–Horn similarity calculations. We thank two anonymous reviewers for their useful comments. Financial support for this study was provided by the French and Dutch funding organizations, IFREMER and NWO-ALW (project grant 809.63.013), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Heijs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heijs, S.K., Aloisi, G., Bouloubassi, I. et al. Microbial Community Structure in Three Deep-Sea Carbonate Crusts. Microb Ecol 52, 451–462 (2006). https://doi.org/10.1007/s00248-006-9099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9099-8

Keywords

Navigation