Skip to main content
Log in

Bacterial Community Succession in Natural River Biofilm Assemblages

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Temporal bacterial community changes in river biofilms were studied using 16S rRNA gene-based polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) followed by sequence analysis. Naturally occurring biofilms were sampled in 2001 during an undisturbed 7-month low-water period in the River Garonne (SW France). During the sampling period epilithic biomass exhibited a particular pattern: two 3-month periods of accumulation that resulted in two peaks in summer and fall, each at about 25 g ash-free dry mass per square meter. Bacterial community DGGE profiles differed between the summer and fall biomass peaks and shared only 30% common operational taxonomic units (OTUs), suggesting the influence of seasonal factors on these communities. During the second biomass accrual phase, bacterial richness and the appearance of new OTUs fitted a conceptual model of bacterial biofilm succession. During succession, five OTUs (corresponding to Dechloromonas sp., Nitrospira sp., and three different Spirosoma spp.) exhibited particular patterns and were present only during clearly defined successional stages, suggesting differences in life-history strategies for epilithic bacteria. Co-inertia analysis of DGGE banding patterns and physical–chemical data showed a significant relationship between community structure and environmental conditions suggesting that bacterial communities were mainly influenced by seasonal changes (temperature, light) and hydrodynamic stability. Within the periods of stability, analysis of environmental variables and community patterns showed the dominant influence of time and maturation on bacterial community structure. Thus, succession in these naturally occurring epilithic biofilm assemblages appears to occur through a combination of allogenic (seasonal) and autogenic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. RI Amann W Ludwig K-H Schleifer (1995) ArticleTitlePhylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol Rev 59 143–169 Occurrence Handle7535888 Occurrence Handle1:CAS:528:DyaK2MXkvVGmurk%3D

    PubMed  CAS  Google Scholar 

  2. T Améziane F Garabétian D Dalger S Sauvage A Dauta J Capblancq (2002) ArticleTitleEpilithic biomass in a large gravel-bed river (the Garonne, France): a manifestation of eutrophication? River Res Appl 18 343–354

    Google Scholar 

  3. InstitutionalAuthorNameAPHA (1992) Standard methods for the examination of waterand wastewater American Public Health Association Washington, DC

    Google Scholar 

  4. TJ Battin LA Kaplan JD Newbold CME Hansen (2003) ArticleTitleContributions of microbial biofilms to ecosystem processes in stream mesocosms Nature 426 439–442 Occurrence Handle14647381 Occurrence Handle10.1038/nature02152 Occurrence Handle1:CAS:528:DC%2BD3sXpt1GlsLk%3D

    Article  PubMed  CAS  Google Scholar 

  5. BJF Biggs (1996) Patterns in benthic algae of streams RJ Stevenson ML Bothwell RL Lowe (Eds) Algal ecology—freshwater benthic ecosystems Academic Press San Diego 31–56

    Google Scholar 

  6. BJF Biggs RJ Stevenson RL Lowe (1998) ArticleTitleA habitat matrix conceptual model for stream periphyton Arch Hydrobiol 143 21–56

    Google Scholar 

  7. BJF Biggs NC Tuchman RL Lowe RL Stevenson (1999) ArticleTitleResource stress alters hydrological disturbance effects in a stream periphyton community Oikos 8 95–108

    Google Scholar 

  8. TL Bott TD Brock (1970) ArticleTitleGrowth and metabolism of periphytic bacteria: methodology Limnol Oceanogr 15 333–342 Occurrence Handle10.4319/lo.1970.15.3.0333

    Article  Google Scholar 

  9. L Boulos M Prévost B Barbeau J Coallier R Desjardins (1999) ArticleTitleLIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water J Microbiol Methods 37 77–86 Occurrence Handle10395466 Occurrence Handle10.1016/S0167-7012(99)00048-2 Occurrence Handle1:STN:280:DyaK1MzitFeruw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  10. IHM Brümmer W Fehr I Wagner-Döbler (2000) ArticleTitleBiofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle Appl Environ Microbiol 66 3078–3082 Occurrence Handle10877809

    PubMed  Google Scholar 

  11. IHM Brümmer A Felske I Wagner-Döbler (2003) ArticleTitleDiversity and seasonal variability of β-Proteobacteria in biofilms of polluted rivers: analysis by temperature gradient gel electrophoresis and cloning Appl Environ Microbiol 69 4463–4473 Occurrence Handle12902230

    PubMed  Google Scholar 

  12. IHM Brümmer ADM Felske I Wagner-Döbler (2004) ArticleTitleDiversity and seasonal changes of uncultured Planctomycetales in river biofilms Appl Environ Microbiol 70 5094–5101 Occurrence Handle15345387

    PubMed  Google Scholar 

  13. MR Chénier D Beaumier R Roy BT Driscoll JR Lawrence CW Greer (2003) ArticleTitleImpact of seasonal variations and nutrient inputs on nitrogen cycling and degradation of hexadecane by replicated river biofilms Appl Environ Microbiol 69 5170–5177 Occurrence Handle12957898

    PubMed  Google Scholar 

  14. WJ Costerton (2000) Phenotypic plasticity in bacterial biofilms as it affects issues of viability and culturability RR Colwell DJ Grimes (Eds) Nonculturable Microorganisms in the Environment Chapman & Hall New York 131–145

    Google Scholar 

  15. S Dolédec D Chessel (1994) ArticleTitleCo-inertia analysis: an alternative method for studying species–environment relationships Freshwater Biol 31 1277–1294

    Google Scholar 

  16. JA Elliot AE Irish CS Reynolds (2000) ArticleTitleThe diversity and succession of phytoplankton communities in disturbance-free environments, using the model PROTECH Arch Hydrobiol 149 251–258

    Google Scholar 

  17. SG Fisher (1990) ArticleTitleRecovery processes in lotic ecosystems: limits of successional theory Environ Manage 14 725–736

    Google Scholar 

  18. N Fromin J Hamelin S Tarnawski D Roesti K Jourdain-Miserez N Forestier S Teyssier-Cuvelle F Gillet P Aragno P Rossi (2002) ArticleTitleStatistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns Environ Microbiol 4 634–643 Occurrence Handle12460271 Occurrence Handle10.1046/j.1462-2920.2002.00358.x Occurrence Handle1:CAS:528:DC%2BD3sXpsFyn

    Article  PubMed  CAS  Google Scholar 

  19. V Gosselain L Viroux JP Descy (1998) ArticleTitleCan a community of small-bodied grazers control phytoplankton in river Freshwater Biol 39 9–24 Occurrence Handle10.1046/j.1365-2427.1998.00258.x

    Article  Google Scholar 

  20. JP Grime (1977) Plant strategies and vegetation processes John Wiley & Sons Chichester

    Google Scholar 

  21. JG Holt NR Krieg PHA Sneath J Staley ST Williams (1994) Bergey's Manual of Determinative Bacteriology Williams & Wilkins Baltimore

    Google Scholar 

  22. P Jaccard (1908) ArticleTitleNouvelles recherches sur la distribution florale Bull Soc Vaud Sci Nat 44 223–270

    Google Scholar 

  23. CR Jackson (2003) ArticleTitleChanges in community properties during microbial succession Oikos 101 444–448 Occurrence Handle10.1034/j.1600-0706.2003.12254.x

    Article  Google Scholar 

  24. CR Jackson PF Churchill EE Roden (2001) ArticleTitleSuccessional changes in bacterial assemblage structure during epilithic biofilm development Ecology 82 555–566

    Google Scholar 

  25. KK Jefferson (2004) ArticleTitleWhat drives bacteria to produce a biofilm FEMS Microbiol Lett 236 163–173 Occurrence Handle15251193 Occurrence Handle10.1016/j.femsle.2004.06.005 Occurrence Handle1:CAS:528:DC%2BD2cXls1ajtrc%3D

    Article  PubMed  CAS  Google Scholar 

  26. S Kropf H Heuer M Grüning K Smalla (2004) ArticleTitleSignificance test for comparing complex microbial community fingerprints using pairwise similarity measures J Microbiol Methods 57 187–195 Occurrence Handle15063059 Occurrence Handle10.1016/j.mimet.2004.01.002 Occurrence Handle1:CAS:528:DC%2BD2cXivVWlsLg%3D

    Article  PubMed  CAS  Google Scholar 

  27. JR Lawrence DE Caldwell (1987) ArticleTitleBehavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments Microb Ecol 14 15–27

    Google Scholar 

  28. JR Lawrence B Scharf G Packroff TR Neu (2002) ArticleTitleMicroscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition Microb Ecol 43 199–207

    Google Scholar 

  29. LG Leff JV McArthur JL Meyer LJ Shimkets (1994) ArticleTitleEffects of macroinvertebrates on detachment of bacteria from biofilms in stream microcosms J N Am Benthol Soc 13 234–243

    Google Scholar 

  30. MJ Lemke LG Leff (1999) ArticleTitleBacterial populations in an anthropogenically disturbed stream: comparison of different seasons Microb Ecol 38 234–243 Occurrence Handle10541785 Occurrence Handle10.1007/s002489900173

    Article  PubMed  Google Scholar 

  31. CY Loo (2003) Oral streptococcal genes that encode biofilm formation M Wilson D Devine (Eds) Medical Implications of Biofilms Cambridge University Press Cambridge 212–227

    Google Scholar 

  32. J Lorenzen LH Larsen T Kjaer NP Revsbech (1998) ArticleTitleBiosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sediment Appl Environ Microbiol 64 3264–3269 Occurrence Handle9726869 Occurrence Handle1:CAS:528:DyaK1cXmtVajsbg%3D

    PubMed  CAS  Google Scholar 

  33. W Ludwig O Strunk R Westram L Richter H Meier Yadhukumar A Buchner T Lai S Steppi G Jobb I Förster I Brettske S Gerber AW Ginhart O Gross S Grumann S Hermann R Jost A König T Liss R Lüßmann M May B Nonhoff B Reichel R Strehlow A Stamatakis A Stuckmann A Vilbig M Lenke T Ludwig A Bode K-H Schleifer (2004) ArticleTitleARB: a software environment for sequence data Nucleic Acids Res 32 1363–1371 Occurrence Handle14985472 Occurrence Handle10.1093/nar/gkh293 Occurrence Handle1:CAS:528:DC%2BD2cXhvFSqu7k%3D

    Article  PubMed  CAS  Google Scholar 

  34. E Lyautey B Lacoste L Ten-Hage JL Rols F Garabetian (2005) ArticleTitleAnalysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation Water Res 39 380–388 Occurrence Handle15644246 Occurrence Handle10.1016/j.watres.2004.09.025 Occurrence Handle1:CAS:528:DC%2BD2MXisFCgug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  35. E Lyautey S Teissier JY Charcosset JL Rols F Garabetian (2003) ArticleTitleBacterial diversity of epilithic biofilm assemblages of an anthropised river section, assessed by DGGE analysis of a 16S rDNA fragment Aquat Microb Ecol 33 217–224

    Google Scholar 

  36. AC Martiny TM Jorgensen H-J Albrechtsen E Arvin S Molin (2003) ArticleTitleLong-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system Appl Environ Microbiol 69 6899–6907 Occurrence Handle14602654 Occurrence Handle10.1128/AEM.69.11.6899-6907.2003 Occurrence Handle1:CAS:528:DC%2BD3sXptVykuro%3D

    Article  PubMed  CAS  Google Scholar 

  37. W Manz K Wendt-Pothoff TR Neu U Szewzyk JR Lawrence (1999) ArticleTitlePhylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy Microb Ecol 37 225–237 Occurrence Handle10341052 Occurrence Handle10.1007/s002489900148 Occurrence Handle1:CAS:528:DyaK1MXkt1OksL4%3D

    Article  PubMed  CAS  Google Scholar 

  38. CD Michener RR Sokal (1957) ArticleTitleA quantitative approach to a problem in classification Evolution 11 130–162

    Google Scholar 

  39. E Morgenroth PA Wilderer (2000) ArticleTitleInfluence of detachment mechanisms on competition in biofilms Water Res 34 417–426 Occurrence Handle10.1016/S0043-1354(99)00157-8 Occurrence Handle1:CAS:528:DC%2BD3cXivFWjtg%3D%3D

    Article  CAS  Google Scholar 

  40. G Muyzer T Brinkhoff U Nübel C Santegoeds H Schafer C Wawer (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology ADL Akkermans JD Elsas Particlevan FJ Bruijn ParticleDe (Eds) Molecular Microbial Ecology Manual Kluwer Academics Dordrecht 1–27

    Google Scholar 

  41. TR Neu JR Lawrence (1997) ArticleTitleDevelopment and structure of microbial biofilms in river water studied by confocal laser scanning microscopy FEMS Microbiol Ecol 24 11–25 Occurrence Handle1:CAS:528:DyaK2sXlvVKqsLs%3D

    CAS  Google Scholar 

  42. ED Odum (1969) ArticleTitleThe strategy of ecosystem development Science 164 262–270 Occurrence Handle5776636 Occurrence Handle1:STN:280:DyaF1M7ltFOqtw%3D%3D

    PubMed  CAS  Google Scholar 

  43. SN Pattinson R Garcia-Ruiz BA Whitton (1998) ArticleTitleSpatial and seasonal variation in denitrification in the Swale–Ouse system, a river continuum Sci Total Environ 211 289–305 Occurrence Handle10.1016/S0048-9697(98)00019-9

    Article  Google Scholar 

  44. N Risgaard-Petersen MH Nicolaisen NP Revsbech BA Lomstein (2004) ArticleTitleCompetition between ammonia-oxidising bacteria and benthic microalgae Appl Environ Microbiol 70 5528–5537 Occurrence Handle15345441 Occurrence Handle10.1128/AEM.70.9.5528-5537.2004 Occurrence Handle1:CAS:528:DC%2BD2cXnslWjs7k%3D

    Article  PubMed  CAS  Google Scholar 

  45. CM Santegoeds TG Ferdelman G Muyzer D Beer ParticleDe (1998) ArticleTitleStructural and functional dynamics of sulfate-reducing populations in bacterial biofilms Appl Environ Microbiol 64 3731–3739 Occurrence Handle9758792 Occurrence Handle1:CAS:528:DyaK1cXms1ent74%3D

    PubMed  CAS  Google Scholar 

  46. InstitutionalAuthorNameSCOR-UNESCO (1966) Determination of photosynthetic pigments in sea water Monographs on Oceanographic Methodology UNESCO Paris

    Google Scholar 

  47. C Shannon W Weaver (1963) The mathematical theory of communication Urbana University of Illinois Press Chicago

    Google Scholar 

  48. WV Sigler J Zeyer (2004) ArticleTitleColony-forming analysis of bacterial community succession in deglaciated soils indicates pioneer stress-tolerant opportunists Microb Ecol 48 316–323 Occurrence Handle15692851 Occurrence Handle10.1007/s00248-003-0189-6 Occurrence Handle1:CAS:528:DC%2BD2MXos1emsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  49. EH Simpson (1949) ArticleTitleMeasurement of diversity Nature 163 688

    Google Scholar 

  50. RJ Stevensen CG Peterson DB Kirschtel CC King NC Tuchman (1991) ArticleTitleDensity-dependent growth, ecological strategies, and effect of nutrients and shading on benthic diatom succession in streams J Phycol 27 59–69

    Google Scholar 

  51. S Teissier F Garabetian M Torre D Dalger L Labroue (2002) ArticleTitleImpact of an urban centre on nitrification cycle processes of epilithic biofilms during a summer low water period River Res Appl 18 21–30

    Google Scholar 

  52. J Thioulouse D Chessel S Dolédec JM Olivier (1997) ArticleTitleADE-4: a multivariate analysis and graphical display software Stat Comput 7 75–83 Occurrence Handle10.1023/A:1018513530268

    Article  Google Scholar 

  53. H Gemerden Particlevan (1993) ArticleTitleMicrobial mats: a joint venture Mar Geol 113 3–25

    Google Scholar 

  54. AS Waller EE Cow EA Edwards (2004) ArticleTitlePerchlorate-reducing microorganisms isolated from contaminated sites Environ Microbiol 6 517–527 Occurrence Handle15049925 Occurrence Handle10.1111/j.1462-2920.2004.00598.x Occurrence Handle1:CAS:528:DC%2BD2cXkt1Kgtrk%3D

    Article  PubMed  CAS  Google Scholar 

  55. P Watnick R Kolter (2000) ArticleTitleBiofilm, city of microbes J Bacteriol 182 2675–2679 Occurrence Handle10781532 Occurrence Handle10.1128/JB.182.10.2675-2679.2000 Occurrence Handle1:CAS:528:DC%2BD3cXivFKqsro%3D

    Article  PubMed  CAS  Google Scholar 

  56. T Wellnitz RB Brader (2003) ArticleTitleMechanisms influencing community composition and succession in mountain stream periphyton: interactions between scouring history, grazing and irradiance J N Am Benthol Soc 22 528–541

    Google Scholar 

  57. H Zhang MA Bruns BE Logen (2002) ArticleTitlePerchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium Environ Microbiol 4 570–576 Occurrence Handle12366751 Occurrence Handle1:CAS:528:DC%2BD38XoslSrsro%3D

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E.L. was supported by a Ph.D. fellowship from the French Ministère de la Recherche et de la Technologie and by a grant for foreign exchange (ATUPS) from the University Paul Sabatier. We are grateful to C. Mur and D. Dalger for water chemistry analysis and C. Foultier, J. Meillon, and S. Teissier for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Lyautey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyautey, E., Jackson, C.R., Cayrou, J. et al. Bacterial Community Succession in Natural River Biofilm Assemblages. Microb Ecol 50, 589–601 (2005). https://doi.org/10.1007/s00248-005-5032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-005-5032-9

Keywords

Navigation