Skip to main content
Log in

Utility of Environmental Primers Targeting Ancient Enzymes: Methylotroph Detection in Lake Washington

  • Microbial Observatories
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Methods have been explored for detection of methylotrophs in natural samples, using environmental primers based on genes involved in the tetrahydromethanopterin (H4MPT)-linked C1 transfer pathway. The underlying hypotheses were that the H4MPT-linked pathway is an ancient methylotrophy pathway, based on gene divergence, and that primers targeting more divergent genes will detect a broader variety of methylotrophs compared to the variety uncovered using probes and primers targeting highly conserved genes. Three groups of novel primer sets were developed targeting mch, mtdB, and fae, key genes in the H4MPT-linked pathway, and these were used to assess the variety of microorganisms possessing these genes in sediments from Lake Washington in Seattle, WA. Environmental clone libraries were constructed for each of the genes and were analyzed by RFLP, and representatives of different RFLP groups were sequenced and subjected to phylogenetic analysis. A combination of all three sets of novel primers allowed detection of the two previously characterized groups of methylotrophs in the site: methanotrophs of the (α- and the ó-proteobacterial groups, belonghg to genera Methylosinus, Methylocystis, Methylomonas, Methylobacter, Methylomicrobium, and Methylococcus. In addition to the genes belonging to known methanotroph populations, novel genes were identified, suggesting existence of previously undetected microbial groups possessing C1 transfer functions in this site. These included sequences clustering with the well-characterized methylotrophic phyla, Methylobacterium, Hyphomicrobium, and Xanthobacter. In addition, sequences divergent from those known for any groups of methylotrophs or methanogens were obtained, suggesting the presence of a yet unidentified microbial group possessing this H4MPT-linked C1 transfer pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. C Anthony (1982) The Biochemistry of Methylotrophs Academic Press New York

    Google Scholar 

  2. AJ Auman ME Lidstrom (2002) ArticleTitleAnalysis of sMMO-containing type I methanotrophs in Lake Washington sediment. Environ Microbiol 4 517–524 Occurrence Handle10.1046/j.1462-2920.2002.00323.x Occurrence Handle1:CAS:528:DC%2BD38XnvFyitro%3D Occurrence Handle12220408

    Article  CAS  PubMed  Google Scholar 

  3. AJ Auman CC Speake ME Lidstrom (2001) ArticleTitlenifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67 4009–4016 Occurrence Handle1:CAS:528:DC%2BD3MXmslWju7s%3D Occurrence Handle11525998

    CAS  PubMed  Google Scholar 

  4. AJ Auman S Stolyar AM Costello ME Lidstrom (2000) ArticleTitleMolecular characterization of methylotrophic isolates from freshwater lake sediments. Appl Environ Microbiol 66 5259–5266 Occurrence Handle10.1128/AEM.66.12.5259-5266.2000 Occurrence Handle1:CAS:528:DC%2BD3MXjsVyhurY%3D Occurrence Handle11097900

    Article  CAS  PubMed  Google Scholar 

  5. L Bodrossy N Stralis-Pavese JC Murrell S Radajewski A Weilharter A Sessitsch (2003) ArticleTitleDevelopment and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5 566–582 Occurrence Handle10.1046/j.1462-2920.2003.00450.x Occurrence Handle1:CAS:528:DC%2BD3sXlvFChs7g%3D Occurrence Handle12823189

    Article  CAS  PubMed  Google Scholar 

  6. DG Bourne AJ Holmes N Iversen JC Murrell (2000) ArticleTitleFluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. FEMS Microbiol Ecol 31 29–38 Occurrence Handle10.1016/S0168-6496(99)00078-1 Occurrence Handle1:CAS:528:DC%2BD3cXhtVelug%3D%3D Occurrence Handle10620716

    Article  CAS  PubMed  Google Scholar 

  7. DG Bourne IR McDonald JC Murrell (2001) ArticleTitleComparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67 3802–3809 Occurrence Handle1:CAS:528:DC%2BD3MXmslWjtLk%3D Occurrence Handle11525970

    CAS  PubMed  Google Scholar 

  8. L Chistoserdova SW Chen A Lapidus ME Lidstrom (2003) ArticleTitleMethylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185 2980–2987 Occurrence Handle1:CAS:528:DC%2BD3sXjs1aqu7s%3D Occurrence Handle12730156

    CAS  PubMed  Google Scholar 

  9. L Chistoserdova C Jenkins MG Kalyuzhnaya CM Marx A Lapidus JA Vorholt JT Staley ME Lidstrom (2004) ArticleTitleThe enigmatic Planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21 1234–1241 Occurrence Handle10.1093/molbev/msh113 Occurrence Handle1:CAS:528:DC%2BD2cXltlKlsrc%3D Occurrence Handle15014146

    Article  CAS  PubMed  Google Scholar 

  10. L Chistoserdova ME Lidstrom (2003) The role of genomics in methylotrophic bacteria for understanding biogeochemical cycling. RS Hails JE Beringer HCJ Godfray (Eds) Genes in the Environment Blackwell Oxford 133–149

    Google Scholar 

  11. L Chistoserdova JA Vorholt RK Thauer ME Lidstrom (1998) ArticleTitleC1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281 99–102 Occurrence Handle10.1126/science.281.5373.99 Occurrence Handle1:CAS:528:DyaK1cXksVOmsrw%3D Occurrence Handle9651254

    Article  CAS  PubMed  Google Scholar 

  12. AM Costello AJ Auman JL Macalady KM Scow ME Lidstrom (2002) ArticleTitleEstimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4 443–450 Occurrence Handle1:CAS:528:DC%2BD38XntFSltLg%3D Occurrence Handle12153585

    CAS  PubMed  Google Scholar 

  13. AM Costello ME Lidstrom (1999) ArticleTitleMolecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65 5066–5074 Occurrence Handle1:CAS:528:DyaK1MXnt1Wmu7g%3D Occurrence Handle10543824

    CAS  PubMed  Google Scholar 

  14. SN Dedysh M Derakshani W Liesack (2001) ArticleTitleDetection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67 4850–4857 Occurrence Handle10.1128/AEM.67.10.4850-4857.2001 Occurrence Handle1:CAS:528:DC%2BD3MXns1WitL0%3D Occurrence Handle11571193

    Article  CAS  PubMed  Google Scholar 

  15. SN Dedysh VN Khmelenina NE Suzina YA Trotsenko JD Semrau W Liesack JM Tidje (2002) ArticleTitleMethylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52 251–261 Occurrence Handle1:CAS:528:DC%2BD38XhsVWmtbc%3D Occurrence Handle11837310

    CAS  PubMed  Google Scholar 

  16. SN Dedysh W Leisack V Khmelenina NE Suzina YA Trotsenko JD Semrau AM Bares NS Panikov JM Tiedje (2000) ArticleTitleMethylocella palustris gen. Nov., sp. Nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methylotrophs. Int J Syst Evol Microbiol 50 955–969 Occurrence Handle1:CAS:528:DC%2BD3cXktF2gsrc%3D Occurrence Handle10843033

    CAS  PubMed  Google Scholar 

  17. NV Doronina YA Trotsenko TP Tourova (2000) ArticleTitleMethylarcula marina gen. nov., sp. 20 nov. and Methylarcula terricola sp nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 5 1849–1859

    Google Scholar 

  18. NV Doronina YA Trotsenko TP Tourova BB Kuznetsov T Leisinger (2000) ArticleTitleMethylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.—novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23 210–218 Occurrence Handle1:CAS:528:DC%2BD3cXmtVWkt7c%3D Occurrence Handle10930073

    CAS  PubMed  Google Scholar 

  19. G Eller S Stubner P Frenzel (2001) ArticleTitleGroup-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett 198 91–97 Occurrence Handle10.1016/S0378-1097(01)00130-6 Occurrence Handle1:CAS:528:DC%2BD3MXjtFGitr4%3D Occurrence Handle11430414

    Article  CAS  PubMed  Google Scholar 

  20. FO Glöckner M Kube M Bauer H Teeling T Lombardot W Ludwig D Gade A Beck K Borzym K Heitmann R Rabus H Schlesner R Amann R Reinhardt (2003) ArticleTitleComplete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100 8298–8303

    Google Scholar 

  21. NI Govorukhina LV Kletsova YD Tsygankov YA Trotsenko AI Netrusov (1987) ArticleTitleCharacteristics of a new obligate methylotroph [in Russian]. Microbiologiya 56 849–854 Occurrence Handle1:CAS:528:DyaL1cXjt1Kk

    CAS  Google Scholar 

  22. J Gulledge A Ahmad PA Steudler WJ Pomerantz CM Cavanaugh (2002) ArticleTitleFamily- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl Environ Microbiol 67 4726–4733 Occurrence Handle10.1128/AEM.67.10.4726-4733.2001

    Article  Google Scholar 

  23. CH Hagemeier L Chistoserdova ME Lidstrom RK Thauer JA Vorholt (2000) ArticleTitleCharacterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267 3762–3769

    Google Scholar 

  24. R Hanson TE Hanson (1996) ArticleTitleMethanotrophic bacteria. Microbiol Rev 60 439–471 Occurrence Handle1:CAS:528:DyaK28XktVejur8%3D Occurrence Handle8801441

    CAS  PubMed  Google Scholar 

  25. AJ Holmes P Roslev IR McDonald N Iversen K Henriksen JC Murrell (1999) ArticleTitleCharacterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65 3312–3328

    Google Scholar 

  26. S Jensen AJ Holmes RA Olsen JC Murrell (2000) ArticleTitleDetection of methane oxidizing bacteria in forest soil by monooxygenase PCR amplification. Microb Ecol 39 282–289 Occurrence Handle1:CAS:528:DC%2BD3cXlsFGhtb8%3D Occurrence Handle10882433

    CAS  PubMed  Google Scholar 

  27. M Kaluzhnaya V Khmelenina B Eshinimaev N Suzina D Nikitin A Solonin JL Lin I McDonald C Murrell Y Trotsenko (2001) ArticleTitleTaxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. nov. Syst Appl Microbiol 24 166–176 Occurrence Handle1:CAS:528:DC%2BD3MXmsl2itrs%3D Occurrence Handle11518319

    CAS  PubMed  Google Scholar 

  28. DP Kelly JC Murrell (1999) ArticleTitleMicrobial metabolism of methanesulfonic acid. Arch Microbiol 172 341–348 Occurrence Handle10.1007/s002030050770 Occurrence Handle1:CAS:528:DyaK1MXnvV2htbw%3D Occurrence Handle10591843

    Article  CAS  PubMed  Google Scholar 

  29. GM King (1992) ArticleTitleEcological aspects of methane oxidation, a key determination of global methane dynamics. Adv Microb Ecol 12 431–474 Occurrence Handle1:CAS:528:DyaK3sXlsFGmtLg%3D

    CAS  Google Scholar 

  30. KM Kuivila JW Murray AH Devol ME Lidstrom CE Reimers (1988) ArticleTitleMethane cycling in the sediments of Lake Washington. Limnol Oceanogr 33 571–581 Occurrence Handle1:CAS:528:DyaL1cXlsFGltLY%3D

    CAS  Google Scholar 

  31. ME Lidstrom S Falkow E Rosenberg K-H Schleidez E Stackebrandt (2001) The methylotrophic bacteria. M Dworkin (Eds) The Prokaryotes Springer-Verlag New York, (http://141.150.157.117.8080/prokPUB/index.htm)

    Google Scholar 

  32. ME Lidstrom L Somers (1984) ArticleTitleSeasonal study of methane consumption in Lake Washington. Appl Environ Microbiol 47 1255–1260 Occurrence Handle1:CAS:528:DyaL2cXksVeiurg%3D

    CAS  Google Scholar 

  33. IR Malashenko VA Romanovskaia VN Bogachenko AD Shved (1975) ArticleTitleThermophilic and thermotolerant bacteria that assimilate methane [in Russian]. Mikrobiologiia 44 855–862 Occurrence Handle1207503

    PubMed  Google Scholar 

  34. CJ Marx JA Miller L Chistoserdova ME Lidstrom (2004) ArticleTitleMultiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J Bacteriol 186 2173–2178 Occurrence Handle10.1128/JB.186.7.2173-2178.2004 Occurrence Handle1:CAS:528:DC%2BD2cXivVylsb8%3D Occurrence Handle15028703

    Article  CAS  PubMed  Google Scholar 

  35. IR McDonald AJ Holmes EM Kenna JC Murrell (1997) Molecular methods for the detection of methanotrophs. D Sheehan (Eds) Methods in Biotechnology, vol. 2. Bioremediation Protocols Humana Totowa, NJ 111–126

    Google Scholar 

  36. IR McDonald NV Doronina YA Trotsenko C McAnulla JC Murrell (2001) ArticleTitleHyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51 119–122 Occurrence Handle1:STN:280:DC%2BD3MzltlertA%3D%3D Occurrence Handle11211248

    CAS  PubMed  Google Scholar 

  37. IR McDonald JC Murrell (1997) ArticleTitleThe particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156 205–210 Occurrence Handle10.1016/S0378-1097(97)00425-4 Occurrence Handle1:CAS:528:DyaK2sXmvFWjtL0%3D Occurrence Handle9513266

    Article  CAS  PubMed  Google Scholar 

  38. IR McDonald M Upton G Hall RW Pickup C Edwards JR Saunders DA Ritchie JC Murrell (1999) ArticleTitleMolecular ecological analysis of methanogens and methanotrophs in blanket bog peat. Microb Ecol 38 225–233 Occurrence Handle10.1007/s002489900172 Occurrence Handle1:CAS:528:DyaK1MXnslyqtLw%3D Occurrence Handle10541784

    Article  CAS  PubMed  Google Scholar 

  39. IR McDonald KL Warner C McAnulla CA Woodall RS Oremland JC Murrell (2002) ArticleTitleA review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology. Environ Microbiol 4 193–203 Occurrence Handle10.1046/j.1462-2920.2002.00290.x Occurrence Handle1:CAS:528:DC%2BD38XltlansLY%3D Occurrence Handle12010126

    Article  CAS  PubMed  Google Scholar 

  40. WG Meijer LM Croes B Jenni LG Lehmicke ME Lidstrom L Dijkhuizen (1990) ArticleTitleCharacterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic conditions. Arch Microbiol 153 360–367 Occurrence Handle10.1007/BF00249006 Occurrence Handle1:CAS:528:DyaK3cXitFers7c%3D Occurrence Handle2337378

    Article  CAS  PubMed  Google Scholar 

  41. JC Murrell S Radajewski (2000) ArticleTitleCultivation-independent techniques for studying methanotroph ecology. Res Microbiol 151 807–814 Occurrence Handle10.1016/S0923-2508(00)01146-3 Occurrence Handle1:CAS:528:DC%2BD3MXot1Srtg%3D%3D Occurrence Handle11191805

    Article  CAS  PubMed  Google Scholar 

  42. BK Pomper JA Vorholt L Chistoserdova ME Lidstrom RK Thauer (1999) ArticleTitleA methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261 475–480 Occurrence Handle10.1046/j.1432-1327.1999.00291.x Occurrence Handle1:CAS:528:DyaK1MXislGqtr8%3D Occurrence Handle10215859

    Article  CAS  PubMed  Google Scholar 

  43. FA Rainey N Ward-Rainey CG Gliesche E Stackebrandt (1998) ArticleTitlePhylogenetic analysis and intrageneric structure of the genus Hyphomicrobium and the related genus Filomicrobium. Int J Syst Bacteriol 48 635–639 Occurrence Handle9734017

    PubMed  Google Scholar 

  44. MS Rappé SJ Giovannoni (2003) ArticleTitleThe uncultured microbial majority. Ann Rev Microbiol 57 369–394 Occurrence Handle10.1146/annurev.micro.57.030502.090759

    Article  Google Scholar 

  45. J Sambrook EF Fritsch T Maniatis (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Horbor, New York

    Google Scholar 

  46. CC Sommerville IT Knight WL Straube RR Colwell (1989) ArticleTitleSimple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55 548–554 Occurrence Handle2467621

    PubMed  Google Scholar 

  47. DY Sorokin BE Jones JG Kuenen (2000) ArticleTitleA novel obligately methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4 145–155 Occurrence Handle10.1007/s007920070029 Occurrence Handle1:CAS:528:DC%2BD3cXltl2ksb0%3D Occurrence Handle10879559

    Article  CAS  PubMed  Google Scholar 

  48. A Sy E Giraud P Jourand N Garcia A Willems P de Lajudie Y Prin M Neyra M Gillis C Boivin-Masson B Dreyfus (2001) ArticleTitleMethylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183 214–220 Occurrence Handle10.1128/JB.183.1.214-220.2001 Occurrence Handle1:CAS:528:DC%2BD3MXhtFGnug%3D%3D Occurrence Handle11114919

    Article  CAS  PubMed  Google Scholar 

  49. JA Vorholt L Chistoserdova ME Lidstrom RK Thauer (1998) ArticleTitleThe NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180 5351–5356 Occurrence Handle1:CAS:528:DyaK1cXmvVWitLs%3D Occurrence Handle9765566

    CAS  PubMed  Google Scholar 

  50. JA Vorholt L Chistoserdova SM Stolyar RK Thauer ME Lidstrom (1999) ArticleTitleDistribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181 5750–5757 Occurrence Handle1:CAS:528:DyaK1MXmtFKitLw%3D Occurrence Handle10482517

    CAS  PubMed  Google Scholar 

  51. JA Vorholt CJ Marx ME Lidstrom RK Thauer (2000) ArticleTitleNovel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182 6645–6650 Occurrence Handle10.1128/JB.182.23.6645-6650.2000 Occurrence Handle1:CAS:528:DC%2BD3MXitVCnu78%3D Occurrence Handle11073907

    Article  CAS  PubMed  Google Scholar 

  52. JA Vorholt (2002) ArticleTitleCofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178 239–249 Occurrence Handle10.1007/s00203-002-0450-2 Occurrence Handle1:CAS:528:DC%2BD38XovValt78%3D Occurrence Handle12209256

    Article  CAS  PubMed  Google Scholar 

  53. LP Wackett (2003) ArticleTitleAerobic methylotrophs and methanotrophs. Environ Microbiol 5 217–218 Occurrence Handle10.1046/j.1462-2920.2003.00434.x

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the NSF Microbial Observatories Program (MCB-0131957). The Institute for Genomic Research is acknowledged for early release of genomic sequence data for G. obscuriglobus and M. capsulatus (both projects funded by the Department of Energy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Chistoserdova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyuzhnaya, M., Lidstrom, M. & Chistoserdova, L. Utility of Environmental Primers Targeting Ancient Enzymes: Methylotroph Detection in Lake Washington. Microb Ecol 48, 463–472 (2004). https://doi.org/10.1007/s00248-004-0212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-004-0212-6

Keywords

Navigation