Skip to main content
Log in

Productivity and Growth of a Natural Population of the Smallest Free-Living Eukaryote under Nitrogen Deficiency and Sufficiency

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The influence of dissolved inorganic nitrogen (DIN) enrichments on cell-normalized carbon uptake rate, chlorophyll a content, and apparent cell size of a picoeukaryote (<1 μm) (Ostreococcus tauri, the smallest eukaryotic cell) from a natural summer phytoplanktonic assemblage (<200 μm) in a northern Mediterranean Lagoon (Thau Lagoon) was studied in 20-L enclosures in June 1995. The natural planktonic community was incubated in situ for 24 h with initial ammonium and nitrate enrichments and compared to a control without enrichment. O. tauri cell-normalized productivity was estimated from the combination of flow cytometric (FCM) enumeration and 2-h (radioactive) carbonate incorporation measured on post-incubation size fractions (<1μm). No difference between the effects of the two DIN sources of enrichment on the studied biological parameters was measured during this experiment. Growth of natural O. tauri was perturbed by the low DIN availability in the control with drastic changes in cell productivity, chlorophyll content, and cell cycle (from the variations in apparent cell size) as compared to the DIN sufficiency conditions. On the other hand, a very high specific growth rate for natural O. tauri, up to 8 day−1 under DIN enrichments, has been estimated from production and abundance data obtained during this experiment. This supports values measured in culture and suggests that the yearly high contribution of picophytoplankton to the total primary production in Thau Lagoon is likely to be due to their high growth rate rather than the previously suggested lack of grazing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J-M André C Navarette J Blanchot M-H Radenac (1999) ArticleTitlePicophytoplankton dynamics in the equatorial Pacific: Growth and grazing rates from cytometric counts. J Geophys Res 104 3369–380 Occurrence Handle10.1029/1998JC900005

    Article  Google Scholar 

  2. NSR Agawin CM Duarte S Agustí (2000) ArticleTitleNutrient and temperature control the contribution of picoplankton biomass and production. Limnol Oceanogr 45 591–600 Occurrence Handle1:CAS:528:DC%2BD3cXjsV2ltLc%3D

    CAS  Google Scholar 

  3. K Banse (1992) Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open Sea. PG Falkowski AD Woodhead (Eds) Primary Productivity and Biogeochemical Cycles in the sea. Plenum Press New York 409–440

    Google Scholar 

  4. MA Brzezinski RJ Olson SW Chisholm (1990) ArticleTitleSilicon availability and cell cycle progression in marine diatoms. Mar Ecol Prog Ser 67 83–96 Occurrence Handle1:CAS:528:DyaK3MXhs1SntL4%3D

    CAS  Google Scholar 

  5. J Caperon J Meyer (1972) ArticleTitleNitrogen-limited growth of marine phytoplankton—I. Changes in population characteristics with steady-state growth rate. Deep-Sea Res 19 601–618 Occurrence Handle10.1016/0011-7471(72)90089-7 Occurrence Handle1:CAS:528:DyaE3sXktVWruw%3D%3D

    Article  CAS  Google Scholar 

  6. L Charpy J Blanchot (1998) ArticleTitlePhotosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometry. Mar Ecol Prog Ser 162 57–70

    Google Scholar 

  7. M-J Chrétiennot-Dinet C Courties A Vaquer J Neveux H Claustre J Lautier MC Machado (1995) ArticleTitleA new marine picoeukaryote: Ostreococcus tauri gen. et sp. Nov. (Chlorophyta, Prasinophyceae). Phycologia 34 85–292

    Google Scholar 

  8. Y Collos G Slawyk (1979) ArticleTitle 13C and 15N uptake by marine phytoplankton. I. Influence of the nitrogen source and concentration in laboratory cultures of marine diatoms. J Phycol 15 186–190 Occurrence Handle1:CAS:528:DyaE1MXkslWmsb4%3D

    CAS  Google Scholar 

  9. Y Collos G Slawyk (1984) ArticleTitle 13C and 15N uptake by marine phytoplankton. III. Interactions in euphotic zone profiles of stratified oceanic areas. Mar Ecol Progr 19 223–231 Occurrence Handle1:CAS:528:DyaL2cXmt1Kmu7c%3D

    CAS  Google Scholar 

  10. C Courties A Vaquer M Troussellier J Lautier M-J Chrétiennot-Dinet J Neveux C Machado H Claustre (1994) ArticleTitleSmallest eukaryotic organism. Nature 370 255 Occurrence Handle10.1038/370255a0

    Article  Google Scholar 

  11. C Courties R Perasso M-J Chrétiennot-Dinet M Gouy L Guillou M Troussellier (1998) ArticleTitlePhylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). J Phycol 34 844–849 Occurrence Handle10.1046/j.1529-8817.1998.340844.x Occurrence Handle1:CAS:528:DyaK1cXntlWltLw%3D

    Article  CAS  Google Scholar 

  12. DJ Douglas (1984) ArticleTitleMicroautoradiography-based enumeration of photosynthetic picoplankton with estimates of carbon-specific growth rates. Mar Ecol Prog Ser 14 223–228

    Google Scholar 

  13. C Dupuy A Vaquer T Lam-Hoai C Rougier N Mazouni J Lautier Y Collos S Le Gall (2000) ArticleTitleFeeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Mar Ecol Prog Ser 205 171–184

    Google Scholar 

  14. MD DuRand RE Green HM Sosik RJ Olson (2002) ArticleTitleDiel variations in optical properties of Micromonas pusilla (Prasinophyceae). J Phycol 38 1132–1142 Occurrence Handle10.1046/j.1529-8817.2002.02008.x

    Article  Google Scholar 

  15. IR Elrifi DH Turpin (1986) ArticleTitleNitrate and ammonium induced photosynthetic suppression in N-limited Selenastrum minutum. Plant Physiol 81 273–279 Occurrence Handle1:CAS:528:DyaL28XktVektrw%3D

    CAS  Google Scholar 

  16. PG Falkowski DP Stone (1975) ArticleTitleNitrate uptake in marine phytoplankton: energy sources and the interaction with carbon fixation. Mar Biol 32 77–84 Occurrence Handle1:CAS:528:DyaE28XktVyrug%3D%3D

    CAS  Google Scholar 

  17. E Fouilland C Descolas-Gros Y Collos V Vaquer P Souchu A Gasc B Bibent V Pons (2002) ArticleTitleInfluence of nitrogen enrichment on size-fractionated in vitro carboxylase activities of phytoplankton from Thau Lagoon (Coastal Mediterranean Lagoon, France). J Exp Mar Ecol Biol 275 147–171 Occurrence Handle10.1016/S0022-0981(02)00235-6 Occurrence Handle1:CAS:528:DC%2BD38XntVyjs7o%3D

    Article  CAS  Google Scholar 

  18. MJ Furnas (1990) ArticleTitle In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J Plankton Res 12 1117–1151

    Google Scholar 

  19. RJ Geider J LaRoche RM Greene M Olaizola (1993) ArticleTitleResponse of the photosynthetic apparatus of Phaeodactylum tricurnutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol 29 755–766 Occurrence Handle1:CAS:528:DyaK2cXivFCgtbk%3D

    CAS  Google Scholar 

  20. PJ Harrison HL Conway RW Holmes CO Davis (1977) ArticleTitleMarine diatoms grown chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis,Skeletonema costatum, and Thalassiosira gravita. Mar Biol 43 19–31 Occurrence Handle1:CAS:528:DyaE2sXls1Cjtr4%3D

    CAS  Google Scholar 

  21. DL Kirchman (2002) ArticleTitleCalculating microbial growth rates from data on production and standing stocks. Mar Ecol Prog Ser 233 303–306

    Google Scholar 

  22. F Koroleff (1976) Determination of nutrients. Methods of seawater analysis. K Grasshoff (Eds) Methods of Seawater Analysis. Verlag Chemie . 117–182

    Google Scholar 

  23. WKW Li (1994) ArticleTitlePrimary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39 169–175 Occurrence Handle1:CAS:528:DyaK2cXltFKqt7o%3D

    CAS  Google Scholar 

  24. WKW Li WG Harrison (1982) ArticleTitleCarbon flow into the end-products of photosynthesis in short and long incubations of a natural phytoplankton populations. Mar Biol 72 175–182

    Google Scholar 

  25. D Marie CPD Brussaard F Partensky D Vaulot (1999) Flow cytometric analysis of phytoplankton, bacteria and viruses. JP Robinson (Eds) Current Protocols in Cytometry. Willey New York 1–15

    Google Scholar 

  26. J Neveux F Lantoine (1993) ArticleTitleSpectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique. Deep-Sea Res 40 1747–1765 Occurrence Handle10.1016/0967-0637(93)90030-7 Occurrence Handle1:CAS:528:DyaK2cXhslaqt78%3D

    Article  CAS  Google Scholar 

  27. RJ Olson D Vaulot SW Chisholm (1986) ArticleTitleEffects of environmental stresses on the cell cycle of two marine phytoplankton species. Plant Physiol 80 918–925 Occurrence Handle1:CAS:528:DyaL28Xit1aisrc%3D

    CAS  Google Scholar 

  28. MV Orellana MJ Perry BA Watson (1988) Probes for essessing single-cell primary production: antibodies against ribulose-1,5-bisphosphate carboxylase (RUBPcase) and peridinin/chlorophyll a protein (PCP). CM Yentsch FC Mague PK Horan (Eds) Immunological Approaches to Coastal Estuarine and Oceanographic questions. Lecture Notes on Coastal and Estuarines Studies Springer New York 243–262

    Google Scholar 

  29. J Parpais D Marie F Partensky P Morin D Vaulot (1996) ArticleTitleEffect of phosphorus starvation on cell cycle of the photosynthetic prokaryote Prochlorococcus spp. Mar Ecol Prog Ser 132 265–274 Occurrence Handle1:CAS:528:DyaK28XjtVWlur8%3D

    CAS  Google Scholar 

  30. JA Raven (1998) ArticleTitleSmall is beautiful: the picophytoplankton. The Twelfth Tansley Lecture. Funct Ecol 12 503–513 Occurrence Handle10.1046/j.1365-2435.1998.00233.x

    Article  Google Scholar 

  31. B Riemann LM Jensen (1991) ArticleTitleMeasurements of phytoplankton primary production by means of the acidification and bubbling method. J Plankton Res 13 853–862

    Google Scholar 

  32. C Serruya T Berman (1975) ArticleTitlePhosphorus, nitrogen and the growth of algae in lake Kinneret. J Phycol 11 155–162 Occurrence Handle1:CAS:528:DyaE2MXlsVChsro%3D

    CAS  Google Scholar 

  33. G Slawyk Y Collos (1982) ArticleTitle 13C and 15N uptake by marine phytoplankton. 2. Results from a tropical area. Rapp P-v Réun Cons int Explor Mer 180 209–213 Occurrence Handle1:CAS:528:DyaL3sXhtlWru74%3D

    CAS  Google Scholar 

  34. E Steemann-Nielsen (1952) ArticleTitleThe use of radioactive carbon (14C) for measuring organic production in the sea. J Cons Int Expl Mer 18 117–140

    Google Scholar 

  35. P Tréguer P Le Corre (1975) Manuel d’analyse des sels nutritifs dans Peau de mer. Utilisation de l’AutoAnalyseur II Technicon LOG. Université de Bretagne Occidentale Brest France

    Google Scholar 

  36. J Throndsen (1976) ArticleTitleOccurrence and productivity of small marine flagellates. Norw J Bot 23 269–293

    Google Scholar 

  37. M Troussellier C Courties S Zettelmaier (1995) ArticleTitleFlow cytometric analysis of coastal Lagoon bacterioplankton and picophytoplankton: fixation and storage effects. Estuar Coast Shelf S 40 621–633 Occurrence Handle10.1006/ecss.1995.0042

    Article  Google Scholar 

  38. DH Turpin (1983) ArticleTitleAmmonium induced photosynthetic suppression in ammonium limited Dunaliella tertiolecta (Chlorophyta). J Phycol 19 70–76 Occurrence Handle1:CAS:528:DyaL3sXhslKnsbw%3D

    CAS  Google Scholar 

  39. DH Turpin (1991) ArticleTitleEffects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27 14–20 Occurrence Handle1:CAS:528:DyaK3MXlslyru70%3D

    CAS  Google Scholar 

  40. D Vaulot RJ Olson S Merkel SW Chisholm (1987) ArticleTitleCell-cycle response to nutrient starvation in two phytoplankton species Thalassiosira weissflogii and Hymenomonas carterae. Mar Biol 95 625–630

    Google Scholar 

  41. A Vaquer M Troussellier C Courties B Bibent (1996) ArticleTitleStanding stock and dynamics of picophytoplankton in the Thau Lagoon (Northwest Mediterranean coast). Limnol Oceanogr 41 1821–1828

    Google Scholar 

  42. PG Verity CY Robertson CR Tronzo MG Andrews JR Nelson Sieracki (1992) ArticleTitleRelationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37 1434–1446 Occurrence Handle1:CAS:528:DyaK3sXktVCmtrs%3D

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS, University Montpellier II, IFREMER (URM 5). We thank three anonymous referees for insightful comments on the manuscript. This paper represents a portion of a thesis of the University Paris VI of Eric Fouilland, who received a BDI fellowship from CNRS and IFREMER. This is an ISEM 2004 contribution for Chantal Descolas-Gros.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouilland, E., Descolas-Gros, C., Courties, C. et al. Productivity and Growth of a Natural Population of the Smallest Free-Living Eukaryote under Nitrogen Deficiency and Sufficiency. Microb Ecol 48, 103–110 (2004). https://doi.org/10.1007/s00248-003-2035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-2035-2

Keywords

Navigation