Skip to main content
Log in

Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by a Hypersaline Microbial Mat and Related Functional Changes in the Mat Community

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial mats possibly possess degradation capacities for haloorganic pollutants because of their wide range of different functional groups of microorganisms combined with extreme diurnal changes in pH, oxygen, and sulfide gradients. In this study, 20 mg/l of the chlorinated herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was applied to a pristine hypersaline cyanobacterial mat from Guerrero Negro, Mexico, under a light regime of 12 h dark/12 h light (600 μmol photons/m2s). The loss of 2,4-D was followed by chemical GC analysis; functional changes within the mat were determined with microelectrodes for oxygen, photosynthesis, pH, and sulfide. The depletion of 2,4-D due to photooxidation or sorption processes was checked in control experiments. Within 13 days, the light/dark incubated mats degraded 97% of the herbicide, while in permanent darkness only 35% were degraded. Adsorption of 2,4-D to the mat material, agar, or glass walls was negligible (4.6%), whereas 21% of the herbicide was degraded photochemically. The 2,4-D removal rate in the light/dark incubations was comparable to values reported for soils. The phototrophic community of the mat was permanently inhibited by the 2,4-D addition by 17% on average. The sulfate reduction in the entire mat and the respiration in the photic zone were inhibited more strongly but returned to original levels. Since at the end of the experiment the photosynthetic and respiratory activity of the mats were almost as high as in the beginning and 2,4-D almost completely disappeared, we conclude that the examined mats represent a robust and effective system for the degradation of the herbicide where probably the aerobic heterotrophic population is a major player in the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. OM Alfano RJ Brandi AE Cassano (2001) ArticleTitleDegradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation. Chem Eng J 82 209–218 Occurrence Handle10.1016/S1385-8947(00)00358-2 Occurrence Handle1:CAS:528:DC%2BD3MXhvFKhurk%3D

    Article  CAS  Google Scholar 

  2. InstitutionalAuthorNameAnonymous (1994) Herbicide Handbook Weed Science Society of America Champaign, IL

    Google Scholar 

  3. ARS (1995) Pesticide properties database. U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705

  4. JF Buenrostro-Zagal A Ramirez-Oliva S Caffarel-Mendez B Schettino-Bermudez HM Poggi-Varaldo (2000) ArticleTitleTreatment of a 2,4-dichlorophenoxyacetic acid (2,4-D) contamined wastewater in a membrane bioreactor. Wat Sci Technol 42 185–192 Occurrence Handle1:CAS:528:DC%2BD3cXotFGjsLY%3D

    CAS  Google Scholar 

  5. GL Butler TR Deason JC Okelley (1975) ArticleTitleLoss of 5 pesticides from cultures of 21 planktonic algae. Bull Environ Cont Toxicol 13 149–152 Occurrence Handle1:CAS:528:DyaE2MXhsFShsr4%3D

    CAS  Google Scholar 

  6. MI Cabrera CA Martin OM Alfano AE Cassano (1997) ArticleTitlePhotochemical decomposition of 2,4-dichlorophenoxyacetic acid (2,4-d) in aqueous solution.1. Kinetic study. Wat Sci Technol 35 31–39 Occurrence Handle10.1016/S0273-1223(97)00006-1 Occurrence Handle1:CAS:528:DyaK2sXitFyktbw%3D

    Article  CAS  Google Scholar 

  7. BV Chang JY Liu SY Yuan (1998) ArticleTitleEffects of alternative electron donors, acceptors, and inhibitors on 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid dechlorination in soil. J Environ Sci Health Part B—Pesticides Food Contaminants and Agricultural Wastes 33 161–177

    Google Scholar 

  8. UB Cheah RC Kirkwood KY Lum (1998) ArticleTitleDegradation of four commonly used pesticides in Malaysian agricultural soils. J Agr Food Chem 46 1217–1223 Occurrence Handle10.1021/jf970579t Occurrence Handle1:CAS:528:DyaK1cXhsVeltL8%3D

    Article  CAS  Google Scholar 

  9. DG Crosby HO Tutass (1966) ArticleTitlePhotodecomposition of 2,4-dichlorophenoxyacetic acid. J Agr Food Chem 14 596 Occurrence Handle1:CAS:528:DyaF2sXhtVWisw%3D%3D

    CAS  Google Scholar 

  10. DB Donald J Syrgiannis (1995) ArticleTitleOccurrence of pesticides in prairie lakes in Saskatchewan in relation to drought and salinity. J Environ Qual 24 266–270 Occurrence Handle1:CAS:528:DyaK2MXks1Ohtb8%3D

    CAS  Google Scholar 

  11. EPA (1988) 2-(2-Methyl-4-chloro-phenoxy)propionic acid and its salts and esters. U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances, Washington, DC

  12. BZ Fathepure TM Vogel (1991) ArticleTitleComplete degradation of polychlorinated hydrocarbons by a 2-stage biofilm reactor. Appl Environ Microbiol 57 3418–3422 Occurrence Handle1:CAS:528:DyaK38Xislajug%3D%3D Occurrence Handle1785918

    CAS  PubMed  Google Scholar 

  13. LV Gangawane RS Saler L Kulkarni (1980) ArticleTitleEffect of pesticides on growth and hetrocyst formation in Nostoc sp. Marathwada Univ. J. Sci. 19 3–6 Occurrence Handle1:CAS:528:DyaL38XhsFOjsrc%3D

    CAS  Google Scholar 

  14. J Gerritse JC Gottschal (1992) ArticleTitleMineralization of the herbicide 2,3,6-trichlorobenzoic acid by a coculture of anaerobic and aerobic bacteria. FEMS Microbiol Ecol 101 89–98 Occurrence Handle10.1016/0378-1097(92)90830-H Occurrence Handle1:CAS:528:DyaK38XltVOqt74%3D

    Article  CAS  Google Scholar 

  15. J Gerritse G Kloetstra A Borger G Dalstra A Alphenaar JC Gottschal (1997) ArticleTitleComplete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Appl Microbiol Biotechnol 48 553–562 Occurrence Handle10.1007/s002530051096 Occurrence Handle1:CAS:528:DyaK2sXntFCmtrw%3D Occurrence Handle9445538

    Article  CAS  PubMed  Google Scholar 

  16. RN Glud NB Ramsing NP Revsbech (1992) ArticleTitlePhotosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors. J Phycol 28 51–60 Occurrence Handle10.1111/j.0022-3646.1992.00051.x

    Article  Google Scholar 

  17. S Grötzschel RMM Abed D de Beer (2002) ArticleTitleMetabolic shifts in hypersaline microbial mats upon addition of organic substrates. Environ Microbiol 4 683–695 Occurrence Handle10.1046/j.1462-2920.2002.00356.x Occurrence Handle12460276

    Article  PubMed  Google Scholar 

  18. S Grötzschel D de Beer (2002) ArticleTitleEffect of oxygen concentration on photosynthesis and respiration in two hypersaline microbial mats. Microb Ecol 44 208–216 Occurrence Handle10.1007/s00248-002-2011-2 Occurrence Handle12154389

    Article  PubMed  Google Scholar 

  19. S Grötzschel J Köster RMM Abed D de Beer (2002) ArticleTitleDegradation of petroleum model compounds immobilized on clay by a hypersaline microbial mat. Biodegradation 13 273–283 Occurrence Handle10.1023/A:1021263009377 Occurrence Handle12521291

    Article  PubMed  Google Scholar 

  20. K Hawxby B Tubea J Ownby E Easier (1977) ArticleTitleEffects of various classes of herbicides on 4 species of algae. Pestic Biochem Phys 7 203–209 Occurrence Handle1:CAS:528:DyaE2sXksl2mt70%3D

    CAS  Google Scholar 

  21. C Holliger B Schink (1997) Anaerober Abbau organischer Schadstoffe. C Knorr T von Schell (Eds) Mikrobieller Schadstoffabbau Vieweg Verlag Braunschweig 83–90

    Google Scholar 

  22. R Koch (1989) Umweltchemikalien VCH Verlagsgesellschaft Weinheim, Germany

    Google Scholar 

  23. M Kühl C Steuckart G Eickert P Jeroschewski (1998) ArticleTitleA H2 S microsensor for profiling biofilms and sediments: application in an acid lake sediment. Aquat Microb Ecol 15 201–209

    Google Scholar 

  24. B Kuhlmann B Kaczmarczyk U Schottler (1995) ArticleTitleBehavior of phenoxyacetic acids during underground passage with different redox zones. Int J Environ Anal Chem 58 199–205

    Google Scholar 

  25. O Maltseva C McGowan R Fulthorpe P Oriel (1996) ArticleTitleDegradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology-Uk 142 1115–1122 Occurrence Handle1:CAS:528:DyaK28XjtFyisr8%3D

    CAS  Google Scholar 

  26. J Musarrat N Bano RAK Rao (2000) ArticleTitleIsolation and characterization of 2,4-dichlorophenoxyacetic acid-catabolizing bacteria and their biodegradation efficiency in soil. World J Microb Biotechnol 16 495–497 Occurrence Handle10.1023/A:1008945720327 Occurrence Handle1:CAS:528:DC%2BD3cXot1Snurc%3D

    Article  CAS  Google Scholar 

  27. NLM (2001) Hazardous Substances Databank, U.S. National Library of Medicine, vol. 2001

  28. GA O’Connor BC Faibanks EA Doyle (1981) ArticleTitleEffects of sewage sludge on phenoxy herbicide adsorption and degradation in soils. J Environ Qual 10 510–515 Occurrence Handle1:CAS:528:DyaL3MXmtFKgu7k%3D

    CAS  Google Scholar 

  29. A Oren P Gurevich M Azachi Y Henis (1992) ArticleTitleMicrobial degradation of pollutants at high salt concentrations. Biodegradation 3 387–398 Occurrence Handle10.1007/BF00129095 Occurrence Handle1:CAS:528:DyaK3sXltVantbY%3D

    Article  CAS  Google Scholar 

  30. W Reineke M Schlömann (1997) Grundlegende Aspekte des bakteriellen Abbaus von Chloraromaten. C Knorr T von Schell (Eds) Mikrobieller Schadstoffabbau Vieweg Verlag Braunschweig 91–117

    Google Scholar 

  31. NP Revsbech (1989) ArticleTitleAn oxygen microsensor with a guard cathode. Limnol Oceanogr 34 474–478 Occurrence Handle1:CAS:528:DyaL1MXkvVeksbc%3D

    CAS  Google Scholar 

  32. NP Revsbech PB Christensen LP Nielsen (1989) Microelectrode analysis of photosynthetic and respiratory processes in microbial mats. Y Cohen E Rosenberg (Eds) Microbial Mats American Society for Microbiology Washington, DC 228–238

    Google Scholar 

  33. NP Revsbech BB Jørgensen (1983) ArticleTitlePhotosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitations to the method. Limnol Oceonogr 28 749–756

    Google Scholar 

  34. NP Revsbech BB Jørgensen (1986) Microelectrodes: Their use in microbial ecology. KC Marshall (Eds) Advances in Microbial Ecology, vol. 9 Plenum New York 293–352

    Google Scholar 

  35. NP Revsbech BB Jørgensen TH Blackburn Y Cohen (1983) ArticleTitleMicroelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol Oceonogr 28 1062–1074

    Google Scholar 

  36. Rhoades, R (2001) 2,4-D research data, Industry Task Force II, vol. 2001

  37. E Rosenberg R Legmann A Kushmaro R Taube E Adler EZ Ron (1992) ArticleTitlePetroleum bioremediation—a multiphase problem. Biodegradation 3 337–350 Occurrence Handle10.1007/BF00129092 Occurrence Handle1:CAS:528:DyaK3sXlsVGrsLY%3D

    Article  CAS  Google Scholar 

  38. JM Safi (2002) ArticleTitleAssociation between chronic exposure to pesticides and recorded cases of human malignancy in Gaza Governorates (1990–1999). Sci Total Environ 284 75–84 Occurrence Handle10.1016/S0048-9697(01)00868-3 Occurrence Handle1:CAS:528:DC%2BD38XmsFSruw%3D%3D Occurrence Handle11846176

    Article  CAS  PubMed  Google Scholar 

  39. CM Santegoeds TG Ferdelman G Muyzer D de Beer (1998) ArticleTitleStructural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64 3731–3739 Occurrence Handle1:CAS:528:DyaK1cXms1ent74%3D Occurrence Handle9758792

    CAS  PubMed  Google Scholar 

  40. JT Stevens DD Sumner (1991) Herbicides. WJ Hayes ER Laws (Eds) Handbook of Pesticide Toxicology Academic Press New York

    Google Scholar 

  41. DG Thompson GR Stephenson KR Solomon AV Skepasts (1984) ArticleTitlePersistence of (2,4-dichlorophenoxy)acetic acid and 2-(2,4-dichlorophenoxy)propionic acid in agricultural and forest soils of northern and southern Ontario. J Agr Food Chem 32 578–581 Occurrence Handle1:CAS:528:DyaL2cXitVCrurk%3D

    CAS  Google Scholar 

  42. M Tichy W Vermaas (1999) ArticleTitleIn vivo role of catalase-peroxidase in Synechocystis sp. Strain PCC 6803. J Bacteriol 181 1875–1882 Occurrence Handle1:CAS:528:DyaK1MXitVCmsrY%3D Occurrence Handle10074082

    CAS  PubMed  Google Scholar 

  43. NTL Torstensson (1975) ArticleTitleDegradation of 2,4-D and MCPA in soils of low pH. Environ Qual Safety 3 262–265 Occurrence Handle1:CAS:528:DyaE28XltFOrsLs%3D

    CAS  Google Scholar 

  44. N Tuxen PL Tuchsen K Rugge HJ Albrechtsen PL Bjerg (2000) ArticleTitleFate of seven pesticides in an aerobic aquifer studied in column experiments. Chemosphere 41 1485–1494

    Google Scholar 

  45. H van Gemerden (1993) ArticleTitleMicrobial mats: a joint venture. Mar Geol 113 3–25 Occurrence Handle10.1016/0025-3227(93)90146-M

    Article  Google Scholar 

  46. WHO (1978) 2,4-D. World Health Organisation, Geneva, p 9

  47. WHO (1989) 2,4-Dichlorophenoxyacetic acid (2,4-D): environmental aspects. World Health Organisation, Geneva, p 61

  48. YZ Zhao W Li IN Chou (1987) ArticleTitleCytoskeletal perturbation induced by herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). J Toxicol Environ Health 20 11–26 Occurrence Handle1:CAS:528:DyaL2sXhtlensL4%3D Occurrence Handle3806697

    CAS  PubMed  Google Scholar 

  49. C Zipper C Bolliger T Fleischmann MJF Suter W Angst MD Muller HPE Kohler (1999) ArticleTitleFate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. Biodegradation 10 271–278 Occurrence Handle10.1023/A:1008396022622 Occurrence Handle1:CAS:528:DC%2BD3cXktF2htbs%3D Occurrence Handle10633543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. Ferran Garcia-Pichel, who provided the mat samples and the experimental infrastructure in his laboratory; he and Dr. Susanne Neuer are especially thanked for their hospitality during the measurements in Phoenix. Anja Eggers, Gabi Eickert, and Ines Schröder are gratefully thanked for the production of the microsensors. Furthermore, we acknowledge Dr. Raeid Abed and Brian Wade for their help during the measurements, and Dr. Peter Stief as well as Dr. Henk Jonkers for their comments on the manuscript. This research was financially supported by the Deutsche Forschungsgemeinschaft (DFG, grant RU 458/18) and the Max-Planck-Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Grötzschel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grötzschel, S., Köster, J. & de Beer, D. Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by a Hypersaline Microbial Mat and Related Functional Changes in the Mat Community. Microb Ecol 48, 254–262 (2004). https://doi.org/10.1007/s00248-003-2020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-2020-9

Keywords

Navigation