Skip to main content

Advertisement

Log in

The Calculative Nature of Microbe–Mineral Interactions

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microorganisms continually redefine themselves at many levels, including the molecule, cell, and community. Although it was initially assumed that this resulted from the genesis of information within DNA alone, it has since been shown that innovation originates at multiple levels. This occurs through calculative units, each unit consisting of two proliferating structures, one nested within the other and each undergoing changes in structural geometry that affect the proliferation rate of the other. For example, the recombination of genetic structures affects the proliferation of community structures, and the recombination of community structures affects the proliferation of genetic structures. The proliferation of a nested series of structures (e.g., genes proliferating within cells, cells proliferating within communities, communities proliferating within ecosystems) results in a logic circuit that calculates the form and function of each structural element in the series. In this situation each element functions as both a habitat and an inhabitant (environment and organism), and it is this dichotomy that determines the balance of nature. Nested geological structures, such as minerals and continents, also proliferate and redefine themselves in much the same way. Microbe–mineral interactions thus link nested biological calculations to an analogous set of nested geological calculations. Examples include the microorganisms involved in the nucleation (proliferation) of ferric hydroxides, carbonates, silicates, and ice crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. MA Andrade C Perez-Iratxeta CP Ponting (2001) ArticleTitleProtein repeats: structures, functions and evolution. J Struct Biol 134 117–131 Occurrence Handle10.1006/jsbi.2001.4392 Occurrence Handle1:CAS:528:DC%2BD3MXms1alt74%3D Occurrence Handle11551174

    Article  CAS  PubMed  Google Scholar 

  2. KS Black OC Peppe G Gust (2003) ArticleTitleErodibility of pelagic carbonate ooze in the northeast Atlantic. J Exp Mar Biol Ecol 285 143–163 Occurrence Handle10.1016/S0022-0981(02)00524-5

    Article  Google Scholar 

  3. T Boulvain C DeRidder B Mamet A Preat D Gillan (2001) ArticleTitleIron microbial communities in Belgian Frasnian carbonate mounds. Facies 44 47–59

    Google Scholar 

  4. DE Caldwell SJ Caldwell (1980) ArticleTitleFine structure of in situ microbial iron deposits. Geomicrobiol J 2 39–53 Occurrence Handle1:CAS:528:DyaL3cXitFyiurw%3D

    CAS  Google Scholar 

  5. DE Caldwell (2002) ArticleTitleThe calculative nature of microbial biofilms and bioaggregates. Int Microbiol 5 107–116 Occurrence Handle10.1007/s10123-002-0083-y Occurrence Handle1:CAS:528:DC%2BD38XosFGltL0%3D Occurrence Handle12207211

    Article  CAS  PubMed  Google Scholar 

  6. DE Caldwell (2003) Is the feedback between genetic structure and community structure the computational mechanism of biofilm evolution?. WE Krumbein DM Paterson GA Zavarzin (Eds) Fossil and Recent Biofilms, a Natural History of Life on Earth. Kluwer Academic Dordrecht

    Google Scholar 

  7. C Castro (2001) ArticleTitleThe status and programs of scale relativity theory. Chaos Solitons Fractals 12 1585–1606 Occurrence Handle10.1016/S0960-0779(01)00004-2

    Article  Google Scholar 

  8. CA Collins C Guthrie (1999) ArticleTitleAllele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev 13 1970–1982 Occurrence Handle1:CAS:528:DyaK1MXltlGrsrw%3D Occurrence Handle10444595

    CAS  PubMed  Google Scholar 

  9. B Commoner (1961) ArticleTitleIn defense of biology. Science 133 1745 Occurrence Handle1:STN:280:CC%2BD3MvivVA%3D Occurrence Handle13694930

    CAS  PubMed  Google Scholar 

  10. B Commoner (1964) ArticleTitleDeoxyribonucleic acid and the molecular basis of self-duplication. Nature 202 960–968 Occurrence Handle1:STN:280:CCqD3c7mvFM%3D Occurrence Handle14197326

    CAS  PubMed  Google Scholar 

  11. B Commoner (1964) ArticleTitleThe roles of deoxyribonucleic acid in inheritance. Nature 203 486–491 Occurrence Handle1:CAS:528:DyaF2cXks1als7w%3D Occurrence Handle14202365

    CAS  PubMed  Google Scholar 

  12. B Commoner (1965) ArticleTitleBiochemical, biological, and atmospheric evolution. Proc Natl Acad Sci USA 53 1169–1226

    Google Scholar 

  13. B Commoner (1968) ArticleTitleFailure of the Watson-Crick theory as a chemical explanation of inheritance. Nature 220 334–340 Occurrence Handle1:CAS:528:DyaF1MXltl2jtQ%3D%3D Occurrence Handle5684872

    CAS  PubMed  Google Scholar 

  14. B Commoner (1984) Relationship between biological information and the origin of life. K Matsuno K Dose K Harada DL Rohlfing (Eds) Molecular Evolution and Protobiology. Plenum Press New York

    Google Scholar 

  15. Commoner B (2002) Unraveling the DNA myth—the spurious foundation of genetic engineering. Harper’s Mag, February, 39–47

  16. FHC Crick (1970) ArticleTitleThe central dogma of molecular biology. Nature 227 561–563 Occurrence Handle1:CAS:528:DyaE3cXltVGgtLw%3D Occurrence Handle4913914

    CAS  PubMed  Google Scholar 

  17. JP Debenay JJ Guillou E Geslin M Lesourd F Redois (1998) ArticleTitleCrystalization of rhombohedral platelets in a recent porcelaneous formainiferal test. Geobios 31 295–302

    Google Scholar 

  18. HR Dott RL Batten RD Sale (1981) Evolution of the Earth. McGraw-Hill New York

    Google Scholar 

  19. F Dyson (1998) The evolution of the universe. AC Fabian (Eds) Evolution. Cambridge University Press Cambridge, UK

    Google Scholar 

  20. HL Ehrlich (1999) ArticleTitleMicrobes as geologic agents: Their role in mineral formation. Geomicrobiol J 16 135–153 Occurrence Handle10.1080/014904599270659

    Article  Google Scholar 

  21. RJ Ellis (1987) ArticleTitleProteins as molecular chaperones. Nature 328 378–379 Occurrence Handle10.1038/328378a0 Occurrence Handle1:STN:280:BiiB1cjhvFM%3D Occurrence Handle3112578

    Article  CAS  PubMed  Google Scholar 

  22. RJ Ellis SM Hemmingsen (1989) ArticleTitleMolecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14 339–342 Occurrence Handle10.1016/0968-0004(89)90168-0 Occurrence Handle1:CAS:528:DyaL1MXlvV2ltrk%3D Occurrence Handle2572080

    Article  CAS  PubMed  Google Scholar 

  23. D Emerson WC Ghiorse (1992) ArticleTitleIsolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microbiol 58 4001–4010 Occurrence Handle1:CAS:528:DyaK3sXlsFyguw%3D%3D

    CAS  Google Scholar 

  24. D Emerson WC Ghiorse (1993) ArticleTitleRole of disulfide bonds in maintaining the structural integrity of the sheath of Leptothrix discophora sp-6. J Bacteriol 175 7819–7827 Occurrence Handle1:CAS:528:DyaK2cXkvFOltw%3D%3D Occurrence Handle8253670

    CAS  PubMed  Google Scholar 

  25. D Emerson WC Ghiorse (1993) ArticleTitleUltrastructure and chemical composition of the sheath of Leptothrix discophora sp-6. J Bacteriol 175 7808–7818 Occurrence Handle1:CAS:528:DyaK2cXkvFOltg%3D%3D Occurrence Handle7504663

    CAS  PubMed  Google Scholar 

  26. PG Fields (1993) ArticleTitleReduction of cold tolerance of stored-product insects by ice-nucleating-active bacteria. Environ Microbiol 22 470–476

    Google Scholar 

  27. D Fortin FG Ferris TJ Beveridge (1997) ArticleTitleSurface-mediated mineral development by bacteria. Rev Mineral 35 161–180 Occurrence Handle1:CAS:528:DyaK2sXntVGms7o%3D

    CAS  Google Scholar 

  28. E Gazit (2002) ArticleTitleGlobal analysis of tandem aromatic octapeptide repeats: the significance of the aromatic-glycine motif. Bioinformatics 18 880–883 Occurrence Handle10.1093/bioinformatics/18.6.880 Occurrence Handle1:CAS:528:DC%2BD38Xlt1Srtbk%3D Occurrence Handle12075024

    Article  CAS  PubMed  Google Scholar 

  29. WC Ghiorse P Hirsch (1979) ArticleTitleAn ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like bacteria. Microbiol 5 213–226

    Google Scholar 

  30. WC Ghiorse P Hirsch (1982) ArticleTitleIsolation and properties of ferromanganese-depositing budding bacteria from Baltic Sea ferromanganese concretions. Appl Environ Microbiol 43 1464–1472 Occurrence Handle1:CAS:528:DyaL38XktlGrtLg%3D

    CAS  Google Scholar 

  31. D Gurianshierman SE Lindow (1993) ArticleTitleBacterial ice nucleation—significance and molecular basis. FASEB J 7 1338–1343 Occurrence Handle8224607

    PubMed  Google Scholar 

  32. WB Hale MW van der Woude BA Graaten DA Low (1998) ArticleTitleRegulation of uropathogenic Escherichia coli adhesin expression by DNA methylation. Mol Gen Metab 65 191–196 Occurrence Handle10.1006/mgme.1998.2744 Occurrence Handle1:CAS:528:DyaK1MXmtFaq

    Article  CAS  Google Scholar 

  33. WD Hamilton TM Lenton (1998) ArticleTitleSpora and Gaia: How microbes fly with their clouds. Ethol Ecol Evolut 10 1–16

    Google Scholar 

  34. P Hirsch (1989) Genus “Clonothrix” Roze 1896, 329. JJ Staley MP Bryant N Pfennig JG Holt (Eds) Bergey’s Manual of Systematic Bacteriology, vol 3. Williams & Wilkins Baltimore 2008–2009

    Google Scholar 

  35. P Hirsch (1989) Genus Crenothrix Cohn 1870, 108. JT Staley MP Bryant N Pfennig JG Holt (Eds) Bergey’s Manual of Systematic Bacteriology, vol 3. Williams & Wilkins Baltimore 2006–2009

    Google Scholar 

  36. P Hirsch GA Zavarzin OH Tuovinen (1989) Genus I. “Siderocapsa” Molisch 1909, 29. JT Staley MP Bryant N Pfennig JG Holt (Eds) Bergey’s Manual of Systematic Bacteriology, vol 3. Williams & Wilkins Baltimore 1875–1878

    Google Scholar 

  37. S Houot J Berthelin (1992) ArticleTitleSubmicroscopic studies of iron deposits occurring in field drains—formation and evolution. Geoderma 52 209–222 Occurrence Handle10.1016/0016-7061(92)90037-8 Occurrence Handle1:CAS:528:DyaK38XisF2htr4%3D

    Article  CAS  Google Scholar 

  38. A Jigorel G Bertru (1993) ArticleTitleEndogenic development of sediments in a eutrophic lake. Hydrobiologia 268 45–55

    Google Scholar 

  39. A Kelman (1995) ArticleTitleContributions of plant pathology to the biological sciences and industry. Ann Rev Phytopathol 33 1–21 Occurrence Handle10.1146/annurev.py.33.090195.000245 Occurrence Handle1:CAS:528:DyaK2MXosFWis7o%3D

    Article  CAS  Google Scholar 

  40. N Kroger R Deutzmann M Sumper (1999) ArticleTitlePolycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286 1129–1132 Occurrence Handle10.1126/science.286.5442.1129 Occurrence Handle1:CAS:528:DyaK1MXnt1Kltbw%3D Occurrence Handle10550045

    Article  CAS  PubMed  Google Scholar 

  41. T Kuhn P Halbach M Maggiulli (1996) ArticleTitleFormation of ferromanganese microcrusts in relation to glacial/interglacial stages in Pleistocene sediments from Ampere Seamount (subtropical NE Atlantic). Chem Geol 130 217–232 Occurrence Handle10.1016/0009-2541(96)00012-5 Occurrence Handle1:CAS:528:DyaK28XlvFGjuro%3D

    Article  CAS  Google Scholar 

  42. RS Lee JM Stronggunderson MR Lee EC Davidson (1992) ArticleTitleIce-nucleating active bacteria decrease the cold-hardiness of stored grain insects. J Econ Entomol 85 371–374

    Google Scholar 

  43. SY Lee JH Choi ZH Xu (2003) ArticleTitleMicrobial cell surface display. Trends Biotechnol 21 45–52 Occurrence Handle10.1016/S0167-7799(02)00006-9 Occurrence Handle1:CAS:528:DC%2BD38XptlWjtLo%3D Occurrence Handle12480350

    Article  CAS  PubMed  Google Scholar 

  44. J Lovelock (1997) ArticleTitleA geophysiologist’s thoughts on the natural sulphur cycle. Phil Trans R Soc Lond Ser B, Biol Sci 352 143–147

    Google Scholar 

  45. R Lundheim (2002) ArticleTitlePhysiological and ecological significance of biological ice nucleators. Phil Trans R Soc Lond Ser B, Biol Sci 357 937–943

    Google Scholar 

  46. ME Marsh (1999) ArticleTitleCoccolith crystals of Pleurochrysis carterae: crystallographic faces, organization, and development. Protoplasma 207 54–66

    Google Scholar 

  47. ME Marsh AL Ridall P Azadi PJ Duke (2002) ArticleTitleGalacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite. J Struct Biol 139 39–45 Occurrence Handle10.1016/S1047-8477(02)00503-8 Occurrence Handle1:CAS:528:DC%2BD38XnsFSgurk%3D Occurrence Handle12372318

    Article  CAS  PubMed  Google Scholar 

  48. L Margulis (1998) Symbiotic Planet—A New Look at Evolution. Basic Books New York

    Google Scholar 

  49. L Margulis (2002) Acquiring Genomes: A Theory of the Origins of Species. Basic Books New York

    Google Scholar 

  50. MG Marinus NR Morris (1974) ArticleTitleBiological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J Mol Biol 85 309–322 Occurrence Handle1:CAS:528:DyaE2cXkvVOrsbc%3D Occurrence Handle4600143

    CAS  PubMed  Google Scholar 

  51. PJ Newman DJ Patterson (1993) ArticleTitleThe role of an organic matrix during the formation of siliceous scales in the heliozoan Actinophrys-Sol (Actinophryida, Protista). Eur J Protistol 29 334–343

    Google Scholar 

  52. FJ Odling-Smee KN LaLand MW Feldman (1996) ArticleTitleNiche construction. Am Naturalist 147 641–648 Occurrence Handle10.1086/285870

    Article  Google Scholar 

  53. SB Prusiner (1995) ArticleTitleThe prion diseases—one protein, two shapes. Sci Am 272 48–57 Occurrence Handle1:CAS:528:DyaK2MXivFGgsb4%3D

    CAS  Google Scholar 

  54. PK Raha SN Parulkar SC Ghosh S Some US Kundu M Kumar G Saha IK Misra (2000) ArticleTitlePossible microfossils from the Archean banded iron formation (Bailadila Group) Madhya Pradesh, India. J Geol Soc India 55 663–673 Occurrence Handle1:CAS:528:DC%2BD3cXktlGlsr8%3D

    CAS  Google Scholar 

  55. J Reston (1994) Galileo: A Life. HarperCollins New York

    Google Scholar 

  56. M Rees (1998) The evolution of the universe. AC Fabian (Eds) Evolution. Cambridge University Press Cambridge, UK

    Google Scholar 

  57. LL Robbins JE Donachy (1991) ArticleTitleMineral regulating proteins from fossil planktonic foraminifera. ACS Symp Ser 444 139–148

    Google Scholar 

  58. Selvam AM, Fadnavis S (1998) Cantorian fractal spacetime, quantum-like chaos and scale relativity in atmospheric flows. www.geocities.com/capeCanaveral/Lab/5833/soliton/solit.html, pp 1–9

  59. K Tazaki (2000) ArticleTitleFormation of banded iron-manganese structures by natural microbial communities. Clays Clay Minerals 48 511–520 Occurrence Handle1:CAS:528:DC%2BD3cXnslKltrk%3D

    CAS  Google Scholar 

  60. L Tuhela L Carlson OH Tuovinen (1997) ArticleTitleBiogeochemical transformation of Fe and Mn in oxic groundwater and well water environments. J Environ Sci Health Part A—Environ Sci Eng Tox Haz Subst Control 32 407–426

    Google Scholar 

  61. CD Von Dohlen S Kohler ST Alsop WR McManus (2001) ArticleTitleMealybug beta proteobacterial endosymbionts contain gamma proteobacterial symbionts. Nature 412 433–436 Occurrence Handle10.1038/35086563 Occurrence Handle1:CAS:528:DC%2BD3MXlslCqtLc%3D Occurrence Handle11473316

    Article  CAS  PubMed  Google Scholar 

  62. TA Wellnitz KA Grief SP Sheldon (1994) ArticleTitleResponse of macroinvertebrates to blooms of iron-depositing bacteria. Hydrobiologia 28 1–17

    Google Scholar 

  63. GM Wolfaardt JR Lawrence RD Robarts DE Caldwell (1995) ArticleTitleBioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl Environ Microbiol 61 152–158 Occurrence Handle1:CAS:528:DyaK2MXivValu7o%3D

    CAS  Google Scholar 

  64. TL Kieft T Ruscetti (1990) ArticleTitleCharacterization of biological ice nuclei from a lichen. J Bacteriol 172 3519–3523 Occurrence Handle1:CAS:528:DyaK3cXkt1Sltrw%3D Occurrence Handle2188965

    CAS  PubMed  Google Scholar 

  65. W Szymer I Zawaadzki (1997) ArticleTitleBiogenic and anthropogenic sources of ice-forming nuclei. Bull Am Meteorol Soc 78 209–228 Occurrence Handle10.1175/1520-0477(1997)078<0209:BAASOI>2.0.CO;2

    Article  Google Scholar 

  66. KM Browne S Golubic L Seong-Joo (2000) Shallow marine microbial carbonate deposits. R Riding SM Awramik (Eds) Microbial Sediments. . . 233–249

    Google Scholar 

  67. S Hawking (2001) The Universe in a Nutshell. Bantam Books New York

    Google Scholar 

  68. B Jones RW Renaut MR Rosen (1997) ArticleTitleBiogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand. J Sediment Res 67 88–104 Occurrence Handle1:CAS:528:DyaK2sXhsFGgtbo%3D

    CAS  Google Scholar 

  69. Mangum NC (1990) In the land of frozen fires—a history of occupation in El Malpais Country. US National Park Service, Southwest Cultural Resources Center. Professional Paper No 32. Southwest Regional Office, Division of History, Santa Fe, NM, http://www.nps.gov/elma/hist/hist.htm/

  70. C Pellegrino R Cullimore (1997) ArticleTitleThe rebirth of the RMS Titanic: A study of the bioarchaeology of a physically disrupted sunken vessel. Voyage 25 39–46

    Google Scholar 

  71. L Smolin (1997) The Life of the Cosmos. Oxford University Press New York

    Google Scholar 

  72. InstitutionalAuthorNameTime-Life Books (1985) Computer Basics. Time-Life Books New York

    Google Scholar 

  73. H Volker R Schweisfurth P Hirsch (1977) ArticleTitleMorphology and ultrastructure of Crenothrix polyspora Cohn. J Bacteriol 131 306–313 Occurrence Handle1:STN:280:CSiB3cjgtVI%3D Occurrence Handle873887

    CAS  PubMed  Google Scholar 

  74. DE Caldwell (1999) ArticleTitlePost-modern ecology—is the environment the organism?. Environ Microbiol 1 279–281 Occurrence Handle10.1046/j.1462-2920.1999.00048.x Occurrence Handle1:STN:280:DC%2BD3M3jtlygtQ%3D%3D Occurrence Handle11207746

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

On the occasion of his 75th birthday, the authors acknowledge Peter Hirsch for sharing his insight into the diversity of microorganisms and for providing help and encouragement. This began when we were his graduate students more than 30 years ago and still continues today. He, more than any other individual, provided the template that shaped our lives as scientists. That template was neither too rigid nor too flexible, and allowed us to think not only about microbial diversity, but also about its origins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Caldwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldwell, D., Caldwell, S. The Calculative Nature of Microbe–Mineral Interactions . Microb Ecol 47, 252–265 (2004). https://doi.org/10.1007/s00248-003-1015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-1015-x

Keywords

Navigation