Skip to main content

Advertisement

Log in

MRI of the temporomandibular joint in children with juvenile idiopathic arthritis: protocol and findings

  • Musculoskeletal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

This article has been updated

Abstract

Contrast-enhanced magnetic resonance imaging (MRI) is the technique of choice for diagnosis and monitoring of temporomandibular joint (TMJ) disorders in patients with juvenile idiopathic arthritis (JIA), as it is able to visualize both soft tissue and osteochondral changes. Approximately 40% of children with JIA develop inflammatory and chronic osteochondral changes observable on imaging, which if left untreated can lead to significant facial growth impairment, including facial asymmetry and retrognathia. MRI of the TMJ plays a paramount role in diagnosis and treatment monitoring in JIA since early signs of TMJ involvement are difficult to detect clinically and with physical examination. Findings of TMJ arthritis may be classified into acute and chronic domains. Early or acute manifestations include joint effusion, bone marrow edema, synovial thickening, and increased joint enhancement. With disease progression, there are characteristic osteochondral changes, including deformity of the mandibular condyle with shortening of the mandibular ramus, bone erosions, and disk abnormalities. In this pictorial essay, we describe a consensus MRI protocol for the study of the TMJ and illustrate the degree of normal and pathological MRI findings using currently available MRI scoring systems of the TMJ developed for JIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Change history

  • 01 April 2023

    The correct tagging of the author name “Emilio J. Inarejos Clemente” has been updated.

References

  1. Larheim TA, Doria AS, Kirkhus E et al (2015) TMJ imaging in JIA patients—an overview. Semin Orthod 21:102–110

    Article  Google Scholar 

  2. Cannizzaro E, Schroeder S, Müller LM et al (2011) Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J Rheumatol 38:510–515

    Article  PubMed  Google Scholar 

  3. Stoll ML, Sharpe T, Beukelman T et al (2012) Risk factors for temporomandibular joint arthritis in children with juvenile idiopathic arthritis. J Rheumatol 39:1880–1887

    Article  PubMed  Google Scholar 

  4. von Schuckmann L, Klotsche J, Suling A et al (2020) Temporomandibular joint involvement in patients with juvenile idiopathic arthritis: a retrospective chart review. Scand J Rheumatol 49:271–280

    Article  Google Scholar 

  5. Twilt M, Mobers SMLM, Arends LR et al (2004) Temporomandibular involvement in juvenile idiopathic arthritis. J Rheumatol 31:1418–1422

    PubMed  Google Scholar 

  6. Piancino MG, Cannavale R, Dalmasso P et al (2018) Cranial structure and condylar asymmetry of patients with juvenile idiopathic arthritis: a risky growth pattern. Clin Rheumatol. https://doi.org/10.1007/s10067-018-4180-5

    Article  PubMed  Google Scholar 

  7. Muller L, Kellenberger CJ, Cannizzaro E et al (2009) Early diagnosis of temporomandibular joint involvement in juvenile idiopathic arthritis: a pilot study comparing clinical examination and ultrasound to magnetic resonance imaging. Rheumatol Oxf Engl 48:680–685

    Article  Google Scholar 

  8. Miller E, Inarejos Clemente EJ, Tzaribachev N et al (2018) Imaging of temporomandibular joint abnormalities in juvenile idiopathic arthritis with a focus on developing a magnetic resonance imaging protocol. Pediatr Radiol 48:792–800

    Article  PubMed  Google Scholar 

  9. Inarejos Clemente EJ, Tolend M, Junhasavasdikul T et al (2018) Qualitative and semi-quantitative assessment of temporomandibular joint MRI protocols for juvenile idiopathic arthritis at 1.5 and 3.0T. Eur J Radiol 98:90–99

    Article  PubMed  Google Scholar 

  10. von Kalle T, Winkler P, Stuber T (2013) Contrast-enhanced MRI of normal temporomandibular joints in children–is there enhancement or not? Rheumatol Oxf 52:363–367

    Article  Google Scholar 

  11. Kottke R, Saurenmann RK, Schneider MM et al (1987) (2015) Contrast-enhanced MRI of the temporomandibular joint: findings in children without juvenile idiopathic arthritis. Acta Radiol Stockh Swed 56:1145–1152

    Google Scholar 

  12. von Kalle T, Stuber T, Winkler P et al (2015) Early detection of temporomandibular joint arthritis in children with juvenile idiopathic arthritis - the role of contrast-enhanced MRI. Pediatr Radiol 45:402–410

    Article  Google Scholar 

  13. Ostergaard M, Klarlund M (2001) Importance of timing of post-contrast MRI in rheumatoid arthritis: what happens during the first 60 minutes after IV gadolinium-DTPA? Ann Rheum Dis 60:1050–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karlo CA, Stolzmann P, Habernig S et al (2010) Size, shape and age-related changes of the mandibular condyle during childhood. Eur Radiol 20:2512–2517

    Article  PubMed  Google Scholar 

  15. Meyers AB, Laor T (2013) Magnetic resonance imaging of the temporomandibular joint in children with juvenile idiopathic arthritis. Pediatr Radiol 43:1632–1641; quiz 1629–1631

  16. Kellenberger CJ, Junhasavasdikul T, Tolend M, Doria AS (2018) Temporomandibular joint atlas for detection and grading of juvenile idiopathic arthritis involvement by magnetic resonance imaging. Pediatr Radiol 48:411–426

    Article  PubMed  Google Scholar 

  17. Junhasavasdikul T, Abadeh A, Tolend M, Doria AS (2018) Developing a reference MRI database for temporomandibular joints in healthy children and adolescents. Pediatr Radiol 48:1113–1122

    Article  PubMed  Google Scholar 

  18. Katsavrias EG (2002) Changes in articular eminence inclination during the craniofacial growth period. Angle Orthod 72:258–264

    PubMed  Google Scholar 

  19. Yamada M, Matsuzaka T, Uetani M et al (1995) Normal age-related conversion of bone marrow in the mandible: MR imaging findings. Am J Roentgenol 165:1223–1228

    Article  CAS  Google Scholar 

  20. Stoll ML, Guleria S, Mannion ML et al (2018) Defining the normal appearance of the temporomandibular joints by magnetic resonance imaging with contrast: a comparative study of children with and without juvenile idiopathic arthritis. Pediatr Rheumatol Online J 16. https://doi.org/10.1186/s12969-018-0223-3

  21. Kramer J, Stiglbauer R, Piehslinger E et al (1993) MRI of the temporomandibular joint. Demonstrability and significance of the retro-articular vascular plexus. MRT Kiefergelenks Darstellbarkeit Bedeut Retroartikularen Vaskularen Plex 158:192–196

    Google Scholar 

  22. Kellenberger CJ, Arvidsson LZ, Larheim TA (2015) Magnetic resonance imaging of temporomandibular joints in juvenile idiopathic arthritis. Semin Orthod 21:111–120

    Article  Google Scholar 

  23. Koos B, Tzaribachev N, Bott S et al (2013) Classification of temporomandibular joint erosion, arthritis, and inflammation in patients with juvenile idiopathic arthritis. J Orofac Orthop 74:506–519

    Article  CAS  PubMed  Google Scholar 

  24. Vaid YN, Dunnavant FD, Royal SA et al (2014) Imaging of the temporomandibular joint in juvenile idiopathic arthritis. Arthritis Care Res 66:47–54

    Article  Google Scholar 

  25. Tolend MA, Twilt M, Cron RQ et al (2018) Toward establishing a standardized magnetic resonance imaging scoring system for temporomandibular joints in juvenile idiopathic arthritis. Arthritis Care Res 70:758–767

    Article  Google Scholar 

  26. Angenete OW, Augdal TA, Rygg M, Rosendahl K (2022) MRI in the assessment of TMJ-arthritis in children with JIA; repeatability of a newly devised scoring system. Acad Radiol 29:1362–1377

    Article  PubMed  Google Scholar 

  27. Tolend M, Junhasavasdikul T, Cron RQ et al (2022) Discrete choice experiment on a magnetic resonance imaging scoring system for temporomandibular joints in juvenile idiopathic arthritis. Arthritis Care Res 74:308–316

    Article  Google Scholar 

  28. Yamamoto M, Cho KH, Choi SS et al (2014) Individual variations in the vascular content of retrodiscal tissue in the temporomandibular joint: a study using histological sections of human foetuses and magnetic resonance images of adults without pathology. Folia Morphol 73:153–158

    Article  CAS  Google Scholar 

  29. Sano T (2000) Recent developments in understanding temporomandibular joint disorders. Part 2: changes in the retrodiscal tissue. Dentomaxillofacial Radiol 29:260–263

    Article  CAS  Google Scholar 

  30. Kuroda M, Otonari-Yamamoto M, Sano T et al (2015) Diagnosis of retrodiscal tissue in painful temporomandibular joint (TMJ) by fluid-attenuated inversion recovery (FLAIR) signal intensity. Cranio J Craniomandib Pract 33:271–275

    Google Scholar 

  31. Stoll ML, Amin D, Powell KK et al (2018) Risk factors for intraarticular heterotopic bone formation in the temporomandibular joint in juvenile idiopathic arthritis. J Rheumatol 45:1301–1307

    Article  PubMed  Google Scholar 

  32. Maxwell LJ, Beaton DE, Boers M et al (2021) The evolution of instrument selection for inclusion in core outcome sets at OMERACT: Filter 2.2. Semin Arthritis Rheum 51:1320–1330

    Article  PubMed  Google Scholar 

  33. Munir S, Patil K, Miller E et al (2014) Juvenile idiopathic arthritis of the axial joints: a systematic review of the diagnostic accuracy and predictive value of conventional MRI. AJR Am J Roentgenol 202:199–210

    Article  PubMed  Google Scholar 

  34. Tolend M, Doria AS, Meyers AB et al (2021) Assessing the reliability of the OMERACT juvenile idiopathic arthritis magnetic resonance scoring system for temporomandibular joints (JAMRIS-TMJ). J Clin Med 10:4047

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eugenio BD, Glass M (2004) The Kappa statistic: a second look. Comput Linguist 30:95–101

    Article  Google Scholar 

  36. Feinstein AR, Cicchetti DV (1990) High agreement but low Kappa: I. the problems of two paradoxes. J Clin Epidemiol 43:543–549

    Article  CAS  PubMed  Google Scholar 

  37. Gulliford MC, Adams G, Ukoumunne OC et al (2005) Intraclass correlation coefficient and outcome prevalence are associated in clustered binary data. J Clin Epidemiol 58:246–251

    Article  CAS  PubMed  Google Scholar 

  38. Ma GMY, Amirabadi A, Inarejos E et al (2015) MRI thresholds for discrimination between normal and mild temporomandibular joint involvement in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 13:53

    Article  PubMed  PubMed Central  Google Scholar 

  39. Resnick CM, Vakilian PM, Breen M et al (2016) Quantifying temporomandibular joint synovitis in children with juvenile idiopathic arthritis. Arthritis Care Res 68:1795–1802

    Article  CAS  Google Scholar 

  40. Peacock ZS, Vakilian P, Caruso P et al (2016) Quantifying synovial enhancement of the pediatric temporomandibular joint. J Oral Maxillofac Surg 74:1937–1945

    Article  PubMed  Google Scholar 

  41. Abramowicz S, Cheon J-E, Kim S et al (2011) Magnetic resonance imaging of temporomandibular joints in children with arthritis. J Oral Maxillofac Surg 69:2321–2328

    Article  PubMed  Google Scholar 

  42. Weiss PF, Arabshahi B, Johnson A et al (2008) High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum 58:1189–1196

    Article  PubMed  Google Scholar 

  43. Kirkhus E, Arvidsson LZ, Smith H-J et al (2016) Disk abnormality coexists with any degree of synovial and osseous abnormality in the temporomandibular joints of children with juvenile idiopathic arthritis. Pediatr Radiol 46:331–341

    Article  PubMed  Google Scholar 

  44. Leite D de FC, Costa ALF, Appenzeller S et al (2022) Magnetic resonance imaging assessment of juvenile idiopathic arthritis using OMERACT and EuroTMjoint classifications. Int J Oral Maxillofac Surg 51:1473–1481

  45. Kellenberger CJ, Bucheli J, Schroeder-Kohler S et al (2019) Temporomandibular joint magnetic resonance imaging findings in adolescents with anterior disk displacement compared to those with juvenile idiopathic arthritis. J Oral Rehabil 46:14–22

    Article  PubMed  Google Scholar 

  46. Frid P, Augdal TA, Larheim TA et al (2020) Efficacy and safety of intraarticular corticosteroid injections in adolescents with juvenile idiopathic arthritis in the temporomandibular joint: a Norwegian 2-year prospective multicenter pilot study. Pediatr Rheumatol Online J 18:75

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bollhalder A, Patcas R, Eichenberger M et al (2020) Magnetic resonance imaging followup of temporomandibular joint inflammation, deformation, and mandibular growth in juvenile idiopathic arthritis patients receiving systemic treatment. J Rheumatol 47:909–916

    Article  PubMed  Google Scholar 

  48. Angenete OW, Augdal TA, Jellestad S et al (2018) Normal magnetic resonance appearances of the temporomandibular joints in children and young adults aged 2–18 years. Pediatr Radiol 48:341–349

    Article  PubMed  Google Scholar 

  49. Caruso P, Buch K, Rincon S et al (2017) Optimization of quantitative dynamic postgadolinium MRI technique using normalized ratios for the evaluation of temporomandibular joint synovitis in patients with juvenile idiopathic arthritis. Am J Neuroradiol 38:2344–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buch K, Peacock ZS, Resnick CM et al (2020) Regional differences in temporomandibular joint inflammation in patients with juvenile idiopathic arthritis: a dynamic post-contrast magnetic resonance imaging study. Int J Oral Maxillofac Surg 49:1210–1216

    Article  CAS  PubMed  Google Scholar 

  51. Hirahara N, Kaneda T, Muraoka H et al (2021) Quantitative assessment of the mandibular condyle in patients with rheumatoid arthritis using diffusion-weighted imaging. J Oral Maxillofac Surg 79:546–550

    Article  PubMed  Google Scholar 

  52. Otonari T, Wakoh M, Sano T et al (2006) Parameters for diffusion weighted magnetic resonance imaging for temporomandibular joint. Bull Tokyo Dent Coll 47:5–12

    Article  PubMed  Google Scholar 

  53. Sawada E, Kaneda T, Sakai O et al (2019) Increased apparent diffusion coefficient values of masticatory muscles on diffusion-weighted magnetic resonance imaging in patients with temporomandibular joint disorder and unilateral pain. J Oral Maxillofac Surg 77:2223–2229

    Article  PubMed  Google Scholar 

  54. Ariji Y, Taguchi A, Sakuma S et al (2010) Magnetic resonance T2-weighted IDEAL water imaging for assessing changes in masseter muscles caused by low-level static contraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:908–916

    Article  PubMed  Google Scholar 

  55. Okada S, Ito K, Muraoka H et al (2022) Quantitative assessment of the mandibular bone marrow of diabetes mellitus patients using diffusion-weighted magnetic resonance imaging. Oral Radiol 38:349–355

    Article  PubMed  Google Scholar 

  56. Muraoka H, Ito K, Hirahara N et al (2021) Quantitative assessment of the apparent diffusion coefficient values of the inflammatory connective tissue around the mandibular condyle in rheumatoid arthritis. J Oral Maxillofac Surg 79:1230–1235

    Article  PubMed  Google Scholar 

  57. Liu S, Wang M, Ai T et al (2016) In vivo morphological and functional evaluation of the lateral pterygoid muscle: a diffusion tensor imaging study. Br J Radiol 89:20160041

    Article  PubMed  PubMed Central  Google Scholar 

  58. Benavides E, Bilgen M, Al-Hafez B et al (2009) High-resolution magnetic resonance imaging and diffusion tensor imaging of the porcine temporomandibular joint disc. Dentomaxillofacial Radiol 38:148–155

    Article  CAS  Google Scholar 

  59. Ngamsom S, Nakamura S, Sakamoto J et al (2017) The intravoxel incoherent motion MRI of lateral pterygoid muscle: a quantitative analysis in patients with temporomandibular joint disorders. Dentomaxillofacial Radiol 46:20160424

    Article  Google Scholar 

  60. Karlo CA, Patcas R, Kau T et al (2012) MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference. Eur Radiol 22:1579–1585

  61. Kupka MJ, Aguet J, Wagner MM et al (2022) Preliminary experience with black bone magnetic resonance imaging for morphometry of the mandible and visualisation of the facial skeleton. Pediatr Radiol 52:951–958

    Article  PubMed  Google Scholar 

  62. Aguet J, Kupka M, Wagner M et al (2019) Three-dimensional morphometric assessment of the face with “black bone” magnetic resonance imaging. Pediatr Radiol 49:S278

    Google Scholar 

  63. Bae WC, Tafur M, Chang EY et al (2016) High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint. Skeletal Radiol 45:383–391

    Article  PubMed  Google Scholar 

  64. Sanal HT, Bae WC, Pauli C et al (2011) 3T MRI of the temporomandibular joint disc: feasibility of novel quantitative MR evaluation using histologic and biomechanical reference standards. J Orofac Pain 25:345–353

    PubMed  PubMed Central  Google Scholar 

  65. Zhang S, Gersdorff N, Frahm J (2011) Real-time magnetic resonance imaging of temporomandibular joint dynamics. Open Med Imaging J 5. https://doi.org/10.2174/1874347101105010001

  66. Krohn S, Gersdorff N, Wassmann T et al (2016) Real-time MRI of the temporomandibular joint at 15 frames per second—a feasibility study. Eur J Radiol 85:2225–2230

    Article  PubMed  Google Scholar 

  67. Azuma T, Ito J, Kutsuki M et al (2009) Analysis of the mandibular movement by simultaneous multisection continuous ultrafast MRI. Magn Reson Imaging 27:423–433

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors listed in this manuscript fulfill the ICMJE recommendations for authorship. EJIC conceived the idea of the project. All authors contributed to the design of study. All authors helped to write the manuscript. All authors have had an input in reviewing and editing the final draft of this manuscript.

Corresponding author

Correspondence to Emilio J. Inarejos Clemente.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inarejos Clemente, E.J., Tolend, M., Navallas, M. et al. MRI of the temporomandibular joint in children with juvenile idiopathic arthritis: protocol and findings. Pediatr Radiol 53, 1498–1512 (2023). https://doi.org/10.1007/s00247-023-05616-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05616-7

Keywords

Navigation