Skip to main content

Advertisement

Log in

Emerging contrast-enhanced ultrasound applications in children

  • Contrast-enhanced ultrasound (CEUS) in children
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Ultrasound contrast agent (UCA) use in radiology is expanding beyond traditional applications such as evaluation of liver lesions, vesicoureteral reflux and echocardiography. Among emerging techniques, 3-D and 4-D contrast-enhanced ultrasound (CEUS) imaging have demonstrated potential in enhancing the accuracy of voiding urosonography and are ready for wider clinical adoption. US contrast-based lymphatic imaging has been implemented for guiding needle placement in MR lymphangiography in children. In adults, intraoperative CEUS imaging has improved diagnosis and assisted surgical management in tumor resection, and its translation to pediatric brain tumor surgery is imminent. Because of growing interest in precision medicine, targeted US molecular imaging is a topic of active preclinical research and early stage clinical translation. Finally, an exciting new development in the application of UCA is in the field of localized drug delivery and release, with a particular emphasis on treating aggressive brain tumors. Under the appropriate acoustic settings, UCA can reversibly open the blood–brain barrier, allowing drug delivery into the brain. The aim of this article is to review the emerging CEUS applications and provide evidence regarding the feasibility of these applications for clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coleman JL, Navid F, Furman WL, McCarville MB (2014) Safety of ultrasound contrast agents in the pediatric oncologic population: a single-institution experience. AJR Am J Roentgenol 202:966–970

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hwang M, Piskunowicz M, Darge K (2019) Advanced ultrasound techniques for pediatric imaging. Pediatrics 143:e20182609

    Article  PubMed  Google Scholar 

  3. Laugesen NG, Nolsoe CP, Rosenberg J (2017) Clinical applications of contrast-enhanced ultrasound in the pediatric work-up of focal liver lesions and blunt abdominal trauma: a systematic review. Ultrasound Int Open 3:E2–E7

    Article  PubMed  PubMed Central  Google Scholar 

  4. McCarville MB (2011) Contrast-enhanced sonography in pediatrics. Pediatr Radiol 41:238–242

    Article  Google Scholar 

  5. Xu H-X (2009) Contrast-enhanced ultrasound: the evolving applications. World J Radiol 1:15–24

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yusuf GT, Sellars ME, Deganello A et al (2017) Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. AJR Am J Roentgenol 208:446–452

    Article  PubMed  Google Scholar 

  7. Hwang M, De Jong RM, Herman S et al (2017) Novel contrast-enhanced ultrasound evaluation in neonatal hypoxic ischemic injury: clinical application and future directions. J Ultrasound Med 36:2379–2386

    Article  PubMed  Google Scholar 

  8. Lu Y, Liu B, Zheng Y et al (2018) Application of real-time three-dimensional contrast-enhanced ultrasound using SonoVue for the evaluation of focal liver lesions: a prospective single-center study. Am J Transl Res 10:1469–1480

    PubMed  PubMed Central  Google Scholar 

  9. Lee JC, Yan K, Lee SK et al (2017) Focal liver lesions: real-time 3-dimensional contrast-enhanced ultrasonography compared with 2-dimensional contrast-enhanced ultrasonography and magnetic resonance imaging. J Ultrasound Med 36:2015–2026

    Article  PubMed  Google Scholar 

  10. Wang Y, Jing X, Ding J (2016) Clinical value of dynamic 3-dimensional contrast-enhanced ultrasound imaging for the assessment of hepatocellular carcinoma ablation. Clin Imaging 40:402–406

    Article  CAS  PubMed  Google Scholar 

  11. Mejia EJ, Otero HJ, Smith CL et al (2020) Use of contrast-enhanced ultrasound to determine thoracic duct patency. J Vasc Interv Radiol 31:1670–1674

    Article  PubMed  Google Scholar 

  12. Nadolski GJ, Ponce-Dorrego MD, Darge K et al (2018) Validation of the position of injection needles with contrast-enhanced ultrasound for dynamic contract-enhanced MR lymphangiography. J Vasc Interv Radiol 29:1028–1030

    Article  PubMed  Google Scholar 

  13. Sever A, Broillet A, Schneider M et al (2010) Dynamic visualization of lymphatic channels and sentinel lymph nodes using enhanced ultrasound in a swine model. J Ultrasound Med 29:1699–1704

    Article  PubMed  Google Scholar 

  14. Back SJ, Chauvin NA, Ntoulia A et al (2019) Intraoperative contrast-enhanced ultrasound imaging of femoral head perfusion in developmental dysplasia of the hip: a feasibility study. J Ultrasound Med 39:247–257

    Article  PubMed  Google Scholar 

  15. Pace C, Nardone V, Roma S et al (2019) Evaluation of contrast-enhanced intraoperative ultrasound in the detection and management of liver lesions in patients with hepatocellular carcinoma. J Oncol 2019:6089340

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prada F, Perin A, Martegani A et al (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74:542–552

    Article  PubMed  Google Scholar 

  17. Chowdhury SM, Lee T, Willmann JK (2017) Ultrasound-guided drug delivery in cancer. Ultrasonography 36:171–184

    Article  Google Scholar 

  18. Kiessling F, Fokong S, Bzyl J et al (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27

    Article  CAS  PubMed  Google Scholar 

  19. Yang F, Chen Z-Y, Lin Y (2013) Advancement of targeted ultrasound contrast agents and their applications in molecular imaging and targeted therapy. Curr Pharm Des 19:1516–1527

    PubMed  Google Scholar 

  20. Sorace AG, Saini R, Mahoney M, Hoyt K (2012) Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med 31:1543–1550

    Article  PubMed  PubMed Central  Google Scholar 

  21. Woźniak MM, Osemlak P, Ntoulia A et al (2018) 3D/4D contrast-enhanced urosonography (ceVUS) in children — is it superior to the 2D technique? J Ultrason 18:120–125

    Article  PubMed  PubMed Central  Google Scholar 

  22. Woźniak MM, Pawelec A, Wieczorek AP et al (2013) 2D/3D/4D contrast-enhanced voiding urosonography in the diagnosis and monitoring of treatment of vesicoureteral reflux in children — can it replace voiding cystourethrography? J Ultrason 13:394–407

    Article  PubMed  PubMed Central  Google Scholar 

  23. Woźniak MM, Wieczorek AP, Pawelec A et al (2016) Two-dimensional (2D), three-dimensional static (3D) and real-time (4D) contrast enhanced voiding urosonography (ceVUS) versus voiding cystourethrography (VCUG) in children with vesicoureteral reflux. Eur J Radiol 85:1238–1245

    Article  PubMed  Google Scholar 

  24. Luo W, Numata K, Morimoto M et al (2010) Differentiation of focal liver lesions using three-dimensional ultrasonography: retrospective and prospective studies. World J Gastroenterol 16:2109–2119

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu HX, De Lu M, Xie XH et al (2010) Treatment response evaluation with three-dimensional contrast-enhanced ultrasound for liver cancer after local therapies. Eur J Radiol 76:81–88

    Article  PubMed  Google Scholar 

  26. Dori Y, Keller MS, Rome JJ et al (2016) Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease. Circulation 133:1160–1170

    Article  PubMed  Google Scholar 

  27. Itkin M, Piccoli DA, Nadolski G et al (2017) Protein-losing enteropathy in patients with congenital heart disease. J Am Coll Cardiol 69:2929–2937

    Article  CAS  PubMed  Google Scholar 

  28. Chavhan GB, Amaral JG, Temple M, Itkin M (2017) MR lymphangiography in children: technique and potential applications. Radiographics 37:1775–1790

    Article  PubMed  Google Scholar 

  29. Dori Y (2016) Novel lymphatic imaging techniques. Tech Vasc Interv Radiol 19:255–261

    Article  PubMed  Google Scholar 

  30. Cox K, Taylor-Phillips S, Sharma N et al (2018) Enhanced pre-operative axillary staging using intradermal microbubbles and contrast-enhanced ultrasound to detect and biopsy sentinel lymph nodes in breast cancer: a potential replacement for axillary surgery. Br J Radiol 91:20170626

    PubMed  PubMed Central  Google Scholar 

  31. Goldberg BB, Merton DA, Liu J-B et al (2004) Sentinel lymph nodes in a swine model with melanoma: contrast-enhanced lymphatic US. Radiology 230:727–734

    Article  PubMed  Google Scholar 

  32. Sever AR, Mills P, Jones SE et al (2011) Preoperative sentinel node identification with ultrasound using microbubbles in patients with breast cancer. AJR Am J Roentgenol 196:251–256

    Article  PubMed  Google Scholar 

  33. Zhao J, Zhang J, Zhu QL et al (2018) The value of contrast-enhanced ultrasound for sentinel lymph node identification and characterisation in pre-operative breast cancer patients: a prospective study. Eur Radiol 28:1654–1661

    Article  PubMed  Google Scholar 

  34. Weissler JM, Cho EH, Koltz PF et al (2018) Lymphovenous anastomosis for the treatment of chylothorax in infants: a novel microsurgical approach to a devastating problem. Plast Reconstr Surg 141:1502–1507

    Article  CAS  PubMed  Google Scholar 

  35. Da Silva NPB, Hornung M, Beyer LP et al (2019) Intraoperative shear wave elastography vs. contrast-enhanced ultrasound for the characterization and differentiation of focal liver lesions to optimize liver tumor surgery. Ultraschall Med 40:205–211

    Article  PubMed  Google Scholar 

  36. Leen E, Ceccotti P, Moug SJ et al (2006) Potential value of contrast-enhanced intraoperative ultrasonography during partial hepatectomy for metastases: an essential investigation before resection? Ann Surg 243:236–240

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arita J, Hasegawa K, Takahashi M et al (2011) Correlation between contrast-enhanced intraoperative ultrasound using sonazoid and histologic grade of resected hepatocellular carcinoma. AJR Am J Roentgenol 196:1314–1321

    Article  PubMed  Google Scholar 

  38. Engelhardt M, Hansen C, Eyding J et al (2007) Feasibility of contrast-enhanced sonography during resection of cerebral tumours: initial results of a prospective study. Ultrasound Med Biol 33:571–575

    Article  PubMed  Google Scholar 

  39. He W, Jiang X, Wang S et al (2008) Intraoperative contrast-enhanced ultrasound for brain tumors. Clin Imaging 32:419–424

    Article  PubMed  Google Scholar 

  40. Kanno H, Ozawa Y, Sakata K et al (2005) Intraoperative power Doppler ultrasonography with a contrast-enhancing agent for intracranial tumors. J Neurosurg 102:295–301

    Article  PubMed  Google Scholar 

  41. Lekht I, Brauner N, Bakhsheshian J et al (2016) Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series. Neurosurg Focus 40:E6

    Article  PubMed  PubMed Central  Google Scholar 

  42. Prada F, Mattei L, Del Bene M et al (2014) Intraoperative cerebral glioma characterization with contrast enhanced ultrasound. Biomed Res Int 2014:484261

    Article  PubMed  PubMed Central  Google Scholar 

  43. Prantl L, Pfister K, Kubale R et al (2007) Value of high resolution ultrasound and contrast enhanced US pulse inversion imaging for the evaluation of the vascular integrity of free-flap grafts. Clin Hemorheol Microcirc 36:203–216

    CAS  PubMed  Google Scholar 

  44. Woźniak MM, Osemlak P, Pawelec A et al (2014) Intraoperative contrast-enhanced urosonography during endoscopic treatment of vesicoureteral reflux in children. Pediatr Radiol 44:1093–1100

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yeh C-K, Kang S-T (2012) Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Biom J 35:125–139

    Google Scholar 

  46. Kiessling F, Bzyl J, Fokong S et al (2012) Targeted ultrasound imaging of cancer: an emerging technology on its way to clinics. Curr Pharm Des 18:2184–2199

    Article  CAS  PubMed  Google Scholar 

  47. Unnikrishnan S, Klibanov AL (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR Am J Roentgenol 199:292–299

    Article  PubMed  Google Scholar 

  48. Ferrara KW, Borden MA, Zhang H (2009) Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res 42:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klibanov AL (2006) Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investig Radiol 41:354–362

    Article  Google Scholar 

  50. Deshpande N, Ren Y, Foygel K et al (2011) Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology 258:804–811

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kaufmann BA, Lindner JR (2007) Molecular imaging with targeted contrast ultrasound. Curr Opin Biotechnol 18:11–16

    Article  CAS  PubMed  Google Scholar 

  52. Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284

    Article  CAS  PubMed  Google Scholar 

  53. Korpanty G, Carbon JG, Grayburn PA et al (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330

    Article  CAS  PubMed  Google Scholar 

  54. Lindner JR (2009) Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc Res 84:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65:500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang H, Lutz AM, Hristov D et al (2017) Intra-animal comparison between three-dimensional molecularly targeted us and three-dimensional dynamic contrast-enhanced us for early antiangiogenic treatment assessment in colon cancer. Radiology 282:443–452

    Article  PubMed  Google Scholar 

  57. Tadeo I, Bueno G, Berbegall AP et al (2016) Vascular patterns provide therapeutic targets in aggressive neuroblastic tumors. Oncotarget 7:19935–19947

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zormpas-Petridis K, Jerome NP, Blackledge MD et al (2019) MRI imaging of the hemodynamic vasculature of neuroblastoma predicts response to antiangiogenic treatment. Cancer Res 79:2978–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dimcevski G, Kotopoulis S, Bjånes T et al (2016) A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 243:172–181

    Article  CAS  PubMed  Google Scholar 

  60. Pitt WG, Husseini G, Staples BJ (2004) Ultrasonic drug delivery — a general review. Expert Opin Drug Deliv 1:37–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryne A. Didier.

Ethics declarations

Conflicts of interest

Dr. Yusuf has received speaker fees from Siemens and Bracco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online Supplementary Material 1

Coronal four-dimensional (4-D) contrast-enhanced voiding urosonography (VUS) cine clip of the left kidney in a 7-month-old boy demonstrates the dynamic process of vesicoureteral reflux and pelvicalyceal dilation. (MP4 9,067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didier, R.A., Biko, D.M., Hwang, M. et al. Emerging contrast-enhanced ultrasound applications in children. Pediatr Radiol 51, 2418–2424 (2021). https://doi.org/10.1007/s00247-021-05045-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05045-4

Keywords

Navigation