Skip to main content

Advertisement

Log in

Whole-body magnetic resonance imaging: techniques and non-oncologic indications

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Whole-body MRI is increasingly utilized for assessing oncologic and non-oncologic diseases in infants, children and adolescents. Focusing on the non-oncologic indications, this review covers technical elements required to perform whole-body MRI, the advantages and limitations of the technique, and protocol modifications tailored to specific indications. Rheumatologic diseases account for the majority of non-oncologic whole-body MRI performed in pediatric patients at the author’s institution. Whole-body MRI helps in establishing the diagnosis, documenting disease extent and severity, and monitoring treatment response in enthesitis-related arthritis (ERA) and chronic recurrent multifocal osteomyelitis (CRMO). Other non-oncologic indications for whole-body MRI include osteomyelitis (usually pyogenic), pyrexia of unknown origin, neuromuscular disorders, inherited and inflammatory myopathies such as juvenile dermatomyositis and polymyositis, avascular necrosis, and fat/storage disorders. Use of whole-body MRI in postmortem imaging is rising, while whole-body MRI in non-accidental injury is considered to be of limited value. Imaging findings for a range of these indications are reviewed with whole-body MRI examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ley S, Ley-Zaporozhan J, Schenk JP (2009) Whole-body MRI in the pediatric patient. Eur J Radiol 70:442–451

    Article  PubMed  Google Scholar 

  2. Atkin KL, Ditchfield MR (2014) The role of whole-body MRI in pediatric oncology. J Pediatr Hematol Oncol 36:342–352

    Article  PubMed  Google Scholar 

  3. Davis JT, Kwatra N, Schooler GR (2016) Pediatric whole-body MRI: a review of current imaging techniques and clinical applications. J Magn Reson Imaging 44:783–793

    Article  PubMed  Google Scholar 

  4. Eutsler EP, Khanna G (2016) Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol 46:858–872

    Article  PubMed  Google Scholar 

  5. Greer MC, Voss SD, States LJ (2017) Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:e6–e13

    Article  PubMed  Google Scholar 

  6. Chavhan GB, Babyn PS (2011) Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics 31:1757–1772

    Article  PubMed  Google Scholar 

  7. Attariwala R, Picker W (2013) Whole body MRI: improved lesion detection and characterization with diffusion weighted techniques. J Magn Reson Imaging 38:253–268

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brenner DJ, Shuryak I, Einstein AJ (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261:193–198

    Article  PubMed  Google Scholar 

  9. Brady Z, Ramanauskas F, Cain TM et al (2012) Assessment of paediatric CT dose indicators for the purpose of optimisation. Br J Radiol 85:1488–1498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Goo HW, Choi SH, Ghim T et al (2005) Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 35:766–773

    Article  PubMed  Google Scholar 

  11. Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841

    Article  PubMed  Google Scholar 

  12. Hu HH, Pokorney A, Towbin RB et al (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598

    Article  PubMed  Google Scholar 

  13. Flood TF, Stence NV, Maloney JA et al (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228

    Article  PubMed  Google Scholar 

  14. Damasio MB, Magnaguagno F, Stagnaro G (2016) Whole-body MRI: non-oncological applications in paediatrics. Radiol Med 121:454–461

    Article  PubMed  Google Scholar 

  15. van Engelen K, Villani A, Wasserman JD et al (2017) DICER1 syndrome: approach to testing and management at a large pediatric tertiary care center. Pediatr Blood Cancer 65(1)

  16. Schultz KAP, Rednam SP, Kamihara J et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e76–e82

    Article  PubMed  CAS  Google Scholar 

  17. Bueno MT, Martinez-Rios C, la Puente Gregorio A et al (2017) Pediatric imaging in DICER1 syndrome. Pediatr Radiol 47:1292–1301

    Article  PubMed  Google Scholar 

  18. Quijano-Roy S, Avila-Smirnow D, Carlier RY et al (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 22:S68–S84

    Article  PubMed  Google Scholar 

  19. Hollingsworth KG, de Sousa PL, Straub V et al (2012) Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops, 2 may 2010, Stockholm, Sweden, 1-2 October 2009, Paris, France. Neuromuscul Disord 22:S54–S67

    Article  PubMed  Google Scholar 

  20. Arthurs OJ, van Rijn RR, Whitby EH et al (2016) ESPR postmortem imaging task force: where we begin. Pediatr Radiol 46:1363–1369

    Article  PubMed  Google Scholar 

  21. Arthurs OJ, Guy A, Thayyil S et al (2016) Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI. Eur Radiol 26:2327–2336

    Article  PubMed  Google Scholar 

  22. Thayyil S, Sebire NJ, Chitty LS et al (2013) Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet 382:223–233

    Article  PubMed  Google Scholar 

  23. Teixeira SR, Elias Junior J, Nogueira-Barbosa MH et al (2015) Whole-body magnetic resonance imaging in children: state of the art. Radiol Bras 48:111–120

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aquino MR, Tse SM, Gupta S et al (2015) Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns. Pediatr Radiol 45:754–762

    Article  PubMed  Google Scholar 

  25. Lecouvet FE (2016) Whole-body MR imaging: musculoskeletal applications. Radiology 279:345–365

    Article  PubMed  Google Scholar 

  26. Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75

    Article  PubMed  CAS  Google Scholar 

  27. Goo HW (2015) Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol 16:973–985

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mohan S, Moineddin R, Chavhan GB (2015) Pediatric whole-body magnetic resonance imaging: intra-individual comparison of technical quality, artifacts, and fixed structure visibility at 1.5 and 3 T. Indian J Radiol Imaging 25:353–358

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ahlawat S, Fayad LM, Khan MS et al (2016) Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 87:S31–S39

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weckbach S, Michaely HJ, Stemmer A et al (2010) Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol 20:2907–2916

    Article  PubMed  CAS  Google Scholar 

  31. Lindemann ME, Oehmigen M, Blumhagen JO et al (2017) MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion. Med Phys 44:4559–4572

    Article  PubMed  Google Scholar 

  32. Morone M, Bali MA, Tunariu N et al (2017) Whole-body MRI: current applications in oncology. AJR Am J Roentgenol 209:W336–W349

    Article  PubMed  Google Scholar 

  33. Costelloe CM, Madewell JE, Kundra V et al (2013) Conspicuity of bone metastases on fast Dixon-based multisequence whole-body MRI: clinical utility per sequence. Magn Reson Imaging 31:669–675

    Article  PubMed  PubMed Central  Google Scholar 

  34. Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15:275–285

    Article  PubMed  Google Scholar 

  35. Finn JP, Nguyen KL, Hu P (2017) Ferumoxytol vs. gadolinium agents for contrast-enhanced MRI: thoughts on evolving indications, risks, and benefits. J Magn Reson Imaging 46:919–923

  36. Nievelstein RA, Littooij AS (2016) Whole-body MRI in paediatric oncology. Radiol Med 121:442–453

    Article  PubMed  Google Scholar 

  37. Jaramillo D (2010) Whole-body MR imaging, bone diffusion imaging: how and why? Pediatr Radiol 40:978–984

    Article  PubMed  Google Scholar 

  38. Merlini L, Carpentier M, Ferrey S et al (2017) Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol 88:155–162

    Article  PubMed  Google Scholar 

  39. Carter AJ, Greer ML, Gray SE et al (2010) Mock MRI: reducing the need for anaesthesia in children. Pediatr Radiol 40:1368–1374

    Article  PubMed  Google Scholar 

  40. Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927

    Article  PubMed  Google Scholar 

  41. Korchi AM, Hanquinet S, Anooshiravani M et al (2014) Whole-body magnetic resonance imaging: an essential tool for diagnosis and work up of non-oncological systemic diseases in children. Minerva Pediatr 66:169–176

    PubMed  CAS  Google Scholar 

  42. Perez-Rossello JM, Connolly SA, Newton AW et al (2010) Whole-body MRI in suspected infant abuse. AJR Am J Roentgenol 195:744–750

    Article  PubMed  Google Scholar 

  43. Ostergaard M, Eshed I, Althoff CE et al (2017) Whole-body magnetic resonance imaging in inflammatory arthritis: systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol 44:1699–1705

    Article  PubMed  Google Scholar 

  44. Weiss PF (2016) Update on enthesitis-related arthritis. Curr Opin Rheumatol 28:530–536

    Article  PubMed  CAS  Google Scholar 

  45. Arnoldi AP, Schlett CL, Douis H et al (2017) Whole-body MRI in patients with non-bacterial osteitis: radiological findings and correlation with clinical data. Eur Radiol 27:2391–2399

    Article  PubMed  CAS  Google Scholar 

  46. von Kalle T, Heim N, Hospach T et al (2013) Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo 185:655–661

    Article  Google Scholar 

  47. Voit AM, Arnoldi AP, Douis H et al (2015) Whole-body magnetic resonance imaging in chronic recurrent multifocal osteomyelitis: clinical longterm assessment may underestimate activity. J Rheumatol 42:1455–1462

    Article  PubMed  Google Scholar 

  48. Falip C, Alison M, Boutry N et al (2013) Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol 43:355–375

    Article  PubMed  Google Scholar 

  49. Leclair N, Thormer G, Sorge I et al (2016) Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One 11:e0147523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhen-Guo H, Min-Xing Y, Xiao-Liang C et al (2017) Value of whole-body magnetic resonance imaging for screening multifocal osteonecrosis in patients with polymyositis/dermatomyositis. Br J Radiol 90:20160780

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang ZG, Gao BX, Chen H et al (2017) An efficacy analysis of whole-body magnetic resonance imaging in the diagnosis and follow-up of polymyositis and dermatomyositis. PLoS One 12:e0181069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pratesi A, Medici A, Bresci R et al (2013) Sickle cell-related bone marrow complications: the utility of diffusion-weighted magnetic resonance imaging. J Pediatr Hematol Oncol 35:329–330

    Article  PubMed  Google Scholar 

  53. Littooij AS, Kwee TC, Enriquez G et al (2017) Whole-body MRI reveals high incidence of osteonecrosis in children treated for Hodgkin lymphoma. Br J Haematol 176:637–642

    Article  PubMed  CAS  Google Scholar 

  54. Darge K, Jaramillo D, Siegel MJ (2008) Whole-body MRI in children: current status and future applications. Eur J Radiol 68:289–298

    Article  PubMed  Google Scholar 

  55. Orsso CE, Mackenzie M, Alberga AS et al (2017) The use of magnetic resonance imaging to characterize abnormal body composition phenotypes in youth with Prader-Willi syndrome. Metabolism 69:67–75

    Article  PubMed  CAS  Google Scholar 

  56. Norman W, Jawad N, Jones R et al (2016) Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique. Br J Radiol 89:20151028

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shruthi M, Gupta J, Jana M et al (2018) Conventional vs. virtual autopsy with postmortem MRI in phenotypic characterization of stillbirths and malformed fetuses. Ultrasound Obstet Gynecol 51:236-245

Download references

Acknowledgments

I thank Govind Chavhan, Andrea Doria, Jennifer Stimec, Manoj Singh, Sumeet Gupta, Tammy Rayner and Ruth Weiss for their contributions developing whole-body MRI at the Hospital for Sick Children, and Warren Corber for his assistance with the clinical audit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Louise C. Greer.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greer, ML.C. Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol 48, 1348–1363 (2018). https://doi.org/10.1007/s00247-018-4141-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4141-9

Keywords

Navigation