Skip to main content

Advertisement

Log in

Magnetic resonance imaging patterns of treatment-related toxicity in the pediatric brain: an update and review of the literature

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Treatment-related neurotoxicity is a potentially life-threatening clinical condition that can represent a diagnostic challenge. Differentiating diagnoses between therapy-associated brain injury and recurrent disease can be difficult, and the immediate recognition of neurotoxicity is crucial to providing correct therapeutic management, ensuring damage reversibility. For these purposes, the knowledge of clinical timing and specific treatment protocols is extremely important for interpreting MRI patterns. Neuroradiologic findings are heterogeneous and sometimes overlapping, representing the compounding effect of the different treatments. Moreover, MRI patterns can be acute, subacute or delayed and involve different brain regions, depending on (1) the mechanism of action of the specific medication and (2) which brain regions are selectively vulnerable to specific toxic effects. This review illustrates the most common radiologic appearance of radiotherapy, chemotherapy and medication-associated brain injury in children, with special focus on the application of advanced MRI techniques (diffusion, perfusion and proton spectroscopy) in the diagnosis of the underlying processes leading to brain toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pružincová Ľ, Šteňo J, Srbecký M et al (2009) MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol 19:2716–2727

    Article  PubMed  Google Scholar 

  2. Ball WS Jr, Prenger EC, Ballard ET (1992) Neurotoxicity of radio/chemotherapy in children: pathologic and MR correlation. AJNR Am J Neuroradiol 13:761–776

    PubMed  Google Scholar 

  3. Iyer RS, Chaturvedi A, Pruthiet S et al (2011) Medication neurotoxicity in children. Pediatr Radiol 41:1455–1464

    Article  PubMed  Google Scholar 

  4. Vázquez E, Lucaya J, Castellote A et al (2002) Neuroimaging in pediatric leukemia and lymphoma: differential diagnosis. Radiographics 22:1411–1428

    Article  PubMed  Google Scholar 

  5. Vázquez E, Delgado I, Sánchez-Montañez A et al (2011) Side effects of oncologic therapies in the pediatric central nervous system: update on neuroimaging findings. Radiographics 31:1123–1139

    Article  PubMed  Google Scholar 

  6. Valk J, Van der Knaap S (1992) Toxic encephalopathy. AJNR Am J Neuroradiol 13:747–760

    CAS  PubMed  Google Scholar 

  7. Reddick WE, Taghipour DJ, Glass JO et al (2014) Prognostic factors that increase the risk for reduced white matter volumes and deficits in attention and learning for survivors of childhood cancers. Pediatr Blood Cancer 61:1074–1079

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oeffinger K, Mertens A, Sklar C et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355:1572–1582

    Article  CAS  PubMed  Google Scholar 

  9. Hudson MM, Ness KK, Gurney JG et al (2013) Clinical ascertainment health outcomes among adults treated for childhood cancer. JAMA 309:2371–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quattrocchi CC, Errante Y, Rossi Espagnet MC (2016) Magnetic resonance imaging differential diagnosis of brainstem lesions in children. World J Radiol 8:1–20

    Article  PubMed  PubMed Central  Google Scholar 

  11. Greene-Schloesser D, Robbins ME, Peiffer AM et al (2012) Radiation-induced brain injury: a review. Front Oncol 19:2–73

    Google Scholar 

  12. Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212

    Article  CAS  PubMed  Google Scholar 

  13. O’Brien BJ, Colen RR (2014) Post-treatment imaging changes in primary brain tumors. Curr Oncol Rep 16:397

    Article  PubMed  Google Scholar 

  14. Murphy ES, Merchant TE, Wu S et al (2012) Necrosis after craniospinal irradiation: results from a prospective series of children with central nervous system embryonal tumors. Int J Radiat Oncol Biol Phys 83:e655–e660

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    Article  CAS  PubMed  Google Scholar 

  16. Poussaint TY, Rodriguez D (2006) Advanced neuroimaging of pediatric brain tumors: MR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am 16:169–192

    Article  PubMed  Google Scholar 

  17. Ball WS, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9:207–230

    PubMed  Google Scholar 

  18. Bangiyev L, Rossi Espagnet MC, Young R (2014) Adult brain tumor imaging: state of the art. Semin Roentgenol 49:39–52

    Article  PubMed  Google Scholar 

  19. Sugahara T, Korogi Y, Tomiguchi S et al (2000) Post-therapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909

    CAS  PubMed  Google Scholar 

  20. Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from post-treatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558

    Article  CAS  PubMed  Google Scholar 

  21. Verma N, Cowperthwaite MC, Burnett MG et al (2013) Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 15:515–534

    Article  PubMed  PubMed Central  Google Scholar 

  22. Merchant T, Farr JB (2014) Proton beam therapy: a fad or a new standard of care. Curr Opin Pediatr 26:3–8

    Article  CAS  PubMed  Google Scholar 

  23. Faraci M, Morana G, Bagnasco F et al (2011) Magnetic resonance imaging in childhood leukemia survivors treated with cranial radiotherapy: a cross sectional, single center study. Pediatr Blood Cancer 57:240–246

    Article  PubMed  Google Scholar 

  24. Koike T, Yanagimachi N, Ishiguro H et al (2012) High incidence of radiation-induced cavernous hemangioma in long-term survivors who underwent hematopoietic stem cell transplantation with radiation therapy during childhood or adolescence. Biol Blood Marrow Transplant 18:1090–1098

    Article  PubMed  Google Scholar 

  25. Huisman TAGM, Singhi S, Pinto PS (2010) Non-invasive imaging of intracranial pediatric vascular lesions. Childs Nerv Syst 26:1275–1295

    Article  PubMed  Google Scholar 

  26. Di Giannatale A, Morana G, Rossi A et al (2014) Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J Neuro Oncol 117:311–320

    Article  Google Scholar 

  27. Nimjee SM, Powers CJ, Bulsara KR (2004) Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus 21:e4

    Google Scholar 

  28. Acciarri N, Galassi E, Giulioni M et al (2009) Cavernous malformations of the central nervous system in the pediatric age group. Pediatr Neurosurg 45:81–104

    Article  PubMed  Google Scholar 

  29. Chen CY, Zimmerman RA, Faro S et al (1996) Childhood leukemia: central nervous system abnormalities during and after treatment. AJNR Am J Neuroradiol 17:295–310

    CAS  PubMed  Google Scholar 

  30. Löning L, Zimmermann M, Reiter A et al (2000) Secondary neoplasms subsequent to Berlin-Frankfurt-Münster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood 95:2770–2775

    PubMed  Google Scholar 

  31. Hijiya N, Hudson MM, Lensing S et al (2007) Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 297:1207–1215

    Article  CAS  PubMed  Google Scholar 

  32. Bartynski WS (2008) Posterior reversible encephalopathy syndrome, part 1: fundamental imaging and clinical features. AJNR Am J Neuroradiol 29:1036–1042

    Article  CAS  PubMed  Google Scholar 

  33. Morris EB, Laningham FH, Sandlund JT et al (2007) Posterior reversible encephalopathy syndrome in children with cancer. Pediatr Blood Cancer 48:152–159

    Article  PubMed  Google Scholar 

  34. Bartynski WS (2008) Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema. AJNR Am J Neuroradiol 29:1043–1049

    Article  CAS  PubMed  Google Scholar 

  35. Patel AJ, Fox BD, Fulkerson DH et al (2010) Posterior reversible encephalopathy syndrome during posterior fossa tumor resection in a child. J Neurosurg Pediatr 6:377–380

    Article  PubMed  Google Scholar 

  36. Hodnett P, Coyle J, O’Regan K et al (2009) PRES (posterior reversible encephalopathy syndrome), a rare complication of tacrolimus therapy. Emerg Radiol 16:493–496

    Article  CAS  PubMed  Google Scholar 

  37. Donmez FY, Guleryuz P, Agildere M (2014) MRI findings in childhood PRES: what is different than the adults? Clin Neuroradiol 26:209–213

    Article  PubMed  Google Scholar 

  38. McKinney AM, Short J, Truwit CL et al (2007) Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 189:904–912

    Article  PubMed  Google Scholar 

  39. McKinney AM, Kieffer SA, Paylor RT et al (2009) Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR Am J Roentgenol 193:192–206

    Article  PubMed  Google Scholar 

  40. Filley CM, Kleinschmidt-DeMasters BK (2001) Toxic leukoencephalopathy. N Engl J Med 345:425–432

    Article  CAS  PubMed  Google Scholar 

  41. Akiba T, Okeda R, Tajima T (1996) Metabolites of 5-fluorouracil, alpha-fluoro-beta-alanine and fluoroacetic acid, directly injure myelinated fibers in tissue culture. Acta Neuropathol 92:8–13

    Article  CAS  PubMed  Google Scholar 

  42. Wijdicks EF (2001) Neurotoxicity of immunosuppressive drugs. Liver Transpl 7:937–942

    Article  CAS  PubMed  Google Scholar 

  43. Beitinjaneh A, McKinney AM, Cao Q et al (2011) Toxic leukoencephalopathy following fludarabine-associated hematopoietic cell transplantation. Biol Blood Marrow Transplant 17:300–308

    Article  CAS  PubMed  Google Scholar 

  44. Gandola L, Massimino M, Cefalo G et al (2009) Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J Clin Oncol 27:566–571

    Article  CAS  PubMed  Google Scholar 

  45. Vivekanandan S, Breene R, Ramanujachar R et al (2015) The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy and response directed high dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 62:2132–2139

    Article  PubMed  Google Scholar 

  46. Spreafico F, Gandola L, Marchianò A et al (2008) Brain magnetic resonance imaging after high-dose chemotherapy and radiotherapy for childhood brain. Int J Radiat Oncol Biol Phys 70:1011–1019

    Article  PubMed  Google Scholar 

  47. Thust SC, Blanco E, Michalski AJ et al (2014) MRI abnormalities in children following sequential chemotherapy, hyperfractionated accelerated radiotherapy and high-dose thiotepa for high-risk primitive neuroectodermal tumours of the central nervous system. J Med Imaging Radiat Oncol 58:683–690

    Article  PubMed  Google Scholar 

  48. Fouladi M, Chintaqumpala M, Laningham FH et al (2004) White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 22:4551–4560

    Article  PubMed  Google Scholar 

  49. Dietrich U, Wanke I, Mueller T et al (2001) White matter disease in children treated for malignant brain tumors. Childs Nerv Syst 17:731–738

    Article  CAS  PubMed  Google Scholar 

  50. Edelmann MN, Krull KR, Liu W et al (2014) Diffusion tensor imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia. Brain 137:2973–2983

    Article  PubMed  PubMed Central  Google Scholar 

  51. Khong PL, Leung LH, Chan GC et al (2005) White matter anisotropy in childhood medulloblastoma survivors: association with neurotoxicity risk factors. Radiology 236:647–652

    Article  PubMed  Google Scholar 

  52. Khong PL, Leung LH, Fung AS et al (2006) White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 24:884–890

    Article  PubMed  Google Scholar 

  53. Palmer SL, Reddick WE, Glass JO et al (2010) Regional white matter anisotropy and reading ability in patients treated for pediatric embryonal tumors. Brain Imaging Behav 4:132–140

    Article  PubMed  PubMed Central  Google Scholar 

  54. Massimino M, Spreafico F, Pignoli E et al (2016) Comment on: The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy and response directed high-dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 63:1123–1124

    Article  PubMed  Google Scholar 

  55. Vivekanandan S (2016) Reply to comment on: The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy, and response-directed high-dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 63:1125–1126

    Article  PubMed  Google Scholar 

  56. Fisher MJ, Khademian ZP, Simon EM et al (2005) Diffusion-weighted MR imaging of early methotrexate-related neurotoxicity in children. AJNR Am J Neuroradiol 26:1686–1689

    PubMed  Google Scholar 

  57. Rollins N, Winick N, Bash R et al (2004) Acute methotrexate neurotoxicity: findings on diffusion-weighted imaging and correlation with clinical outcome. AJNR Am J Neuroradiol 25:1688–1695

    PubMed  Google Scholar 

  58. Reddick WE, Glass JO, Helton KJ et al (2005) Prevalence of leukoencephalopathy in children treated for acute lymphoblastic leukemia with high-dose methotrexate. AJNR Am J Neuroradiol 26:1263–1269

    PubMed  PubMed Central  Google Scholar 

  59. Reddick WE, Glass JO, Helton KJ et al (2005) A quantitative MR imaging assessment of leukoencephalopathy in children treated for acute lymphoblastic leukemia without irradiation. AJNR Am J Neuroradiol 26:2371–2377

    PubMed  PubMed Central  Google Scholar 

  60. Sandoval C, Kutscher M, Jayabose S et al (2003) Neurotoxicity of intrathecal methotrexate: MR imaging findings. AJNR Am J Neuroradiol 24:1887–1890

    PubMed  Google Scholar 

  61. Schulz U, Mann G, Zoubek A et al (1994) Venous thrombosis of cranial sinuses in asparaginase therapy: a case report. Klin Padiatr 206:342–345

    Article  CAS  PubMed  Google Scholar 

  62. Wani NA, Kosar T, Pala NA et al (2010) Sagittal sinus thrombosis due to L-asparaginase. J Pediatr Neurosci 5:32–35

    Article  PubMed  PubMed Central  Google Scholar 

  63. Boukobza M, Crassard I, Bousser MG et al (2009) MR imaging features of isolated cortical vein thrombosis: diagnosis and follow-up. AJNR Am J Neuroradiol 30:344–348

    Article  CAS  PubMed  Google Scholar 

  64. Wheless JW, Carmant L, Bebin M et al (2009) Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 50:195–205

    Article  CAS  PubMed  Google Scholar 

  65. Pearl PL, Vezina LG, Saneto RP et al (2009) Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 50:184–194

    Article  CAS  PubMed  Google Scholar 

  66. Milh M, Villeneuve N, Chapon F et al (2009) Transient brain magnetic resonance imaging hyperintensity in basal ganglia and brain stem of epileptic infants treated with vigabatrin. J Child Neurol 24:305–315

    Article  PubMed  Google Scholar 

  67. Frytak S, Moertel CH (1978) Childs DS neurologic toxicity associated with high-dose metronidazole therapy. Ann Intern Med 88:361–362

    Article  CAS  PubMed  Google Scholar 

  68. Heaney CJ, Campeau NG, Lindell EP (2003) MR imaging and diffusion-weighted imaging changes in metronidazole (Flagyl)-induced cerebellar toxicity. AJNR Am J Neuroradiol 24:1615–1617

    PubMed  Google Scholar 

  69. Kim E, Na DG, Kim EY et al (2007) MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol 28:1652–1658

    Article  CAS  PubMed  Google Scholar 

  70. McErlean A, Abdalia K, Donoghue V et al (2010) The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40:326–339

    Article  PubMed  Google Scholar 

  71. Rovira A, Alonso J, Córdoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 29:1612–1621

    Article  CAS  PubMed  Google Scholar 

  72. Aschner J, Anderson A, Slaughter J et al (2015) Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am J Clin Nutr 102:1482–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang J, Shi S, Zhou Q et al (2014) Downregulation of the Wnt/β-catenin signaling pathway is involved in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Neurosci Res 92:783–794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Camilla Rossi Espagnet.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi Espagnet, M.C., Pasquini, L., Napolitano, A. et al. Magnetic resonance imaging patterns of treatment-related toxicity in the pediatric brain: an update and review of the literature. Pediatr Radiol 47, 633–648 (2017). https://doi.org/10.1007/s00247-016-3750-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3750-4

Keywords

Navigation