Skip to main content
Log in

Radiologic differences in white matter maturation between preterm and full-term infants: TBSS study

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Widespread white matter (WM) pathology in preterm children has been proposed.

Objective

The purpose of this study was to investigate maturational differences of WM between preterm infants with thinning of the corpus callosum and full-term infants.

Materials and methods

A total of 18 preterm children and 18 full-term children were divided into three subgroups according to the corrected age at the time of diffusion tensor imaging scanning. Tract-based spatial statistics was used for assessing differences in fractional anisotropy (FA) between preterm and full-term children, and between each age-related subgroup in preterm and in full-term children.

Results

In the preterm group, FA values of overall WM showed an increase with age. This trend indicates that WM maturation is a gradual occurrence during a child’s first 2 years. In the full-term group, most WM structures had reached maturation at around 1 year of age; however, centrum semiovale level showed sustained maturation during the first 2 years.

Conclusion

Results of our study demonstrate radiologic maturational differences of WM and provide evidence of the need for therapeutic intervention within 2 years of birth to prevent specific functional impairment and to improve clinical outcome in preterm children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Langhoff-Roos J, Kesmodel U, Jacobsson B et al (2006) Spontaneous preterm delivery in primiparous women at low risk in Denmark: population based study. BMJ 332:937–939

    Article  PubMed  Google Scholar 

  2. Latal B (2009) Prediction of neurodevelopmental outcome after preterm birth. Pediatr Neurol 40:413–419

    Article  PubMed  Google Scholar 

  3. Bhutta AT, Cleves MA, Casey PH et al (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728–737

    Article  PubMed  Google Scholar 

  4. van Kooij BJ, de Vries LS, Ball G et al (2012) Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 33:188–194

    Article  PubMed  Google Scholar 

  5. Hart AR, Whitby EW, Griffiths PD et al (2008) Magnetic resonance imaging and developmental outcome following preterm birth: review of current evidence. Dev Med Child Neurol 50:655–663

    Article  PubMed  Google Scholar 

  6. Arzoumanian Y, Mirmiran M, Barnes PD et al (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol 24:1646–1653

    PubMed  CAS  Google Scholar 

  7. Counsell SJ, Boardman JP (2005) Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. Semin Fetal Neonatal Med 10:403–410

    Article  PubMed  Google Scholar 

  8. Anderson NG, Laurent I, Woodward LJ et al (2006) Detection of impaired growth of the corpus callosum in premature infants. Pediatrics 118:951–960

    Article  PubMed  Google Scholar 

  9. Dudink J, Kerr JL, Paterson K et al (2008) Connecting the developing preterm brain. Early Hum Dev 84:777–782

    Article  PubMed  Google Scholar 

  10. de Bruine FT, van den Berg-Huysmans AA, Leijser LM et al (2011) Clinical implications of MR imaging findings in the white matter in very preterm infants: a 2-year follow-up study. Radiology 261:899–906

    Article  PubMed  Google Scholar 

  11. Keshavan MS, Diwadkar VA, DeBellis M et al (2002) Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci 70:1909–1922

    Article  PubMed  CAS  Google Scholar 

  12. Panigrahy A, Barnes PD, Robertson RL et al (2005) Quantitative analysis of the corpus callosum in children with cerebral palsy and developmental delay: correlation with cerebral white matter volume. Pediatr Radiol 35:1199–1207

    Article  PubMed  Google Scholar 

  13. Volpe JJ (2003) Cerebral white matter injury of the premature infant-more common than you think. Pediatrics 112(1 Pt 1):176–180

    Article  PubMed  Google Scholar 

  14. Counsell SJ, Shen Y, Boardman JP et al (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386

    Article  PubMed  Google Scholar 

  15. Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson 213:560–570

    Article  PubMed  CAS  Google Scholar 

  16. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61

    Article  PubMed  CAS  Google Scholar 

  17. Neil JJ (2008) Diffusion imaging concepts for clinicians. J Magn Reson Imagin 27:1–7

    Article  Google Scholar 

  18. Dubb A, Gur R, Avants B et al (2003) Characterization of sexual dimorphism in the human corpus callosum. Neuroimage 20:512–519

    Article  PubMed  Google Scholar 

  19. van Pul C, van Kooij BJ, de Vries LS et al (2012) Quantitative fiber tracking in the corpus callosum and internal capsule reveals microstructural abnormalities in preterm infants at term-equivalent age. AJNR Am J Neuroradiol 33:678–684

    Article  PubMed  Google Scholar 

  20. Neil JJ, Shiran SI, McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  21. Huppi PS, Maier SE, Peled S et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590

    Article  PubMed  CAS  Google Scholar 

  22. Anjari M, Srinivasan L, Allsop JM et al (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 35:1021–1027

    Article  PubMed  Google Scholar 

  23. Giuliani NR, Calhoun VD, Pearlson GD et al (2005) Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res 74:135–147

    Article  PubMed  Google Scholar 

  24. Kubicki M, Shenton ME, Salisbury DF et al (2002) Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 17:1711–1719

    Article  PubMed  CAS  Google Scholar 

  25. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  26. Inder TE, Wells SJ, Mogridge NB et al (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143:171–179

    Article  PubMed  Google Scholar 

  27. Kier EL, Truwit CL (1996) The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 17:1631–1641

    PubMed  CAS  Google Scholar 

  28. Rose SE, Hatzigeorgiou X, Strudwick MW et al (2008) Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age. Magn Reson Med 60:761–767

    Article  PubMed  Google Scholar 

  29. Skiöld B, Horsch S, Hallberg B et al (2010) White matter changes in extremely preterm infants, a population-based diffusion tensor imaging study. Acta Paediatr 99:842–849

    Article  PubMed  Google Scholar 

  30. van der Knaap MS, Valk J, Barkhof F (2005) Magnetic resonance of myelination and myelin disorders. 3rd edn. Springer, Berlin, New York

  31. Provenzale JM, Liang L, DeLong D et al (2007) Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR Am J Radiol 189:476–486

    Google Scholar 

  32. Minkowski A; Council for International Organizations of Medical Sciences (1967) Regional development of the brain in early life: a symposium organized by the Council for International Organizations of Medical Sciences. Blackwell Scientific, Oxford, Edinburgh

  33. Brody BA, Kinney HC, Kloman AS et al (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    Article  PubMed  CAS  Google Scholar 

  34. Kinney HC, Brody BA, Kloman AS et al (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    Article  PubMed  CAS  Google Scholar 

  35. Barkovich AJ, Kjos BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    PubMed  CAS  Google Scholar 

  36. Bird CR, Hedberg M, Drayer BP et al (1989) MR assessment of myelination in infants and children: usefulness of marker sites. AJNR Am J Neuroradiol 10:731–740

    PubMed  CAS  Google Scholar 

  37. Christophe C, Muller MF, Baleriaux D et al (1990) Mapping of normal brain maturation in infants on phase-sensitive inversion–recovery MR images. Neuroradiology 32:173–178

    Article  PubMed  CAS  Google Scholar 

  38. Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  39. Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31:373–385

    Article  PubMed  Google Scholar 

  40. Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143:S35–S45

    Article  PubMed  CAS  Google Scholar 

  41. Trivedi R, Agarwal S, Rathore RK et al (2009) Understanding development and lateralization of major cerebral fiber bundles in pediatric population through quantitative diffusion tensor tractography. Pediatr Res 66:636–641

    Article  PubMed  Google Scholar 

  42. Brooks-Gunn J, McCarton CM, Casey PH et al (1994) Early intervention in low-birth-weight premature infants. Results through age 5 years from the Infant Health and Development Program. JAMA 272:1257–1262

    Article  PubMed  CAS  Google Scholar 

  43. McCarton CM, Wallace IF, Bennett FC (1996) Early intervention for low-birth-weight premature infants: what can we achieve? Ann Med 28:221–225

    Article  PubMed  CAS  Google Scholar 

  44. Melnyk BM, Alpert-Gillis L, Feinstein NF (2001) Improving cognitive development of low-birth-weight premature infants with the COPE program: a pilot study of the benefit of early NICU intervention with mothers. Res Nurse Health 24:373–389

    Article  CAS  Google Scholar 

  45. Cameron EC, Maehle V, Reid J (2005) The effects of an early physical therapy intervention for very preterm, very low birth weight infants: a randomized controlled clinical trial. Pediatr Phys Ther 17:107–119

    Article  PubMed  Google Scholar 

  46. Spittle AJ, Orton J, Doyle LW et al (2007) Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database Syst Rev 18:CD005495

    Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-013997).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Min Son.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A.Y., Jang, S.H., Lee, E. et al. Radiologic differences in white matter maturation between preterm and full-term infants: TBSS study. Pediatr Radiol 43, 612–619 (2013). https://doi.org/10.1007/s00247-012-2545-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2545-5

Keywords

Navigation