Skip to main content

Advertisement

Log in

The challenges of neonatal magnetic resonance imaging

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Improved neonatal survival rates and antenatal diagnostic imaging is generating a growing demand for postnatal MRI examinations. Neonatal brain MRI is now becoming standard clinical care in many settings, but with the exception of some research centres, the technique has not been optimised for imaging neonates and small children. Here, we review some of the challenges involved in neonatal MRI, including recent advances in overall MR practicality and nursing practice, to address some of the ways in which the MR experience could be made more neonate-friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Johnson S, Fawke J, Hennessy E et al (2009) Neuro-developmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics 124:e249–e257

    Article  PubMed  Google Scholar 

  2. Marlow N, Rose AS, Rands CE et al (2005) Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child 90:F380–F387

    CAS  Google Scholar 

  3. Rutherford M, Srinivasan L, Dyet L et al (2006) Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 36:582–592

    Article  PubMed  Google Scholar 

  4. Ment LR, Bada HS, Barnes P et al (2002) Practice parameter: Neuroimaging of the neonate: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 58:1726–1738

    Article  PubMed  CAS  Google Scholar 

  5. Rutherford M, Biarge MM, Allsop J et al (2010) MRI of perinatal brain injury. Pediatr Radiol 40:819–833

    Article  PubMed  Google Scholar 

  6. Woodward LJ, Anderson PJ, Austin NC et al (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–694

    Article  PubMed  CAS  Google Scholar 

  7. Jokhi RP, Whitby EH (2011) Magnetic resonance imaging of the fetus. Dev Med Child Neurol 53:18–28

    Article  PubMed  Google Scholar 

  8. Kilian AK, Schaible T, Hofmann V et al (2009) Congenital diaphragmatic hernia: Predictive value of MRI relative lung-to-head ration compared with MRI fetal lung volume and sonographic lung-to-head ratio. AJR 192:153–158

    Article  PubMed  Google Scholar 

  9. Rutherford MA (2001) MRI of the neonatal brain. Saunders, UK. Available online at http://www.mrineonatalbrain.com/index.php. Accessed November 2011

  10. Sury MR, Smith JH (2008) Deep sedation and minimal anesthesia. Paediatr Anaesth 18:18–24

    PubMed  Google Scholar 

  11. Sury MR, Hatch DJ, Deeley T et al (1999) Development of a nurse-led sedation service for paediatric magnetic resonance imaging. Lancet 353:1667–1671

    Article  PubMed  CAS  Google Scholar 

  12. Dala PG, Murray D, Cox T et al (2006) Sedation and aesthesia protocols used for magnetic resonance imaging studies in infants: provider and pharmacological considerations. Anesth Analg 103:863–868

    Article  Google Scholar 

  13. Beebe DS, Tran P, Bragg M et al (2000) Trained nurses can provide safe and effective sedation for MRI in pediatric patients. Can J Anaesth 47:205–210

    Article  PubMed  CAS  Google Scholar 

  14. Malviya S, Voepel-Lewis T, Prochaska G et al (2000) Prolonged recovery and delayed side effects of sedation for diagnostic imaging studies in children. Pediatrics 105:e42

    Article  PubMed  CAS  Google Scholar 

  15. Hummel P, Puchalski M, Creech SD et al (2008) Clinical reliability and validity of the N-PASS: neonatal pain, agitation and sedation scale with prolonged pain. J Perinatol 28:56–60

    Article  Google Scholar 

  16. Stevens BJ, Riddell RR, Oberlander TE et al (2007) Assessment of pain in neonates and infants. In: Anand KJ, Stevens BJ, McGrath PJ (eds) Pain in neonates and infants. Pain research and clinical management series, 3rd edn. Elsevier, Edinburgh, pp 67–90

    Google Scholar 

  17. Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 41:1353–1364

    Article  PubMed  Google Scholar 

  18. Saunders DE, Thompson C, Gunny R et al (2007) Magnetic resonance imaging protocols for paediatric neuroradiology. Pediatr Radiol 37:789–797

    Article  PubMed  Google Scholar 

  19. Sury MRJ, Harker H, Begent J et al (2005) The management of infants and children for painless imaging. Clin Radiol 60:731–741

    Article  PubMed  CAS  Google Scholar 

  20. Mathur AM, Neil JJ, McKinstry RC et al (2008) Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol 38:260–264

    Article  PubMed  Google Scholar 

  21. Nordahl CW, Simon TJ, Zierhut C et al (2008) Brief reports: Methods for acquiring structural MRI data in very young children with autism without the use of sedation. J Autism Dev Disord 38:1581–1590

    Article  PubMed  Google Scholar 

  22. Stevens B, Taddio A, Ohlsson A et al (1997) The efficacy of sucrose for relieving procedural pain in neonates—a systematic review and meta-analysis. Acta Paediatr 86:837–842

    Article  PubMed  CAS  Google Scholar 

  23. Stevens B, Yamada J, Ohlsson A (2010) Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst Rev 1:CD001069

    PubMed  Google Scholar 

  24. Harrison D, Stevens B, Bueno M et al (2010) Efficacy of sweet solutions for analgesia in infants between 1 and 12 months of age: a systematic review. Arch Dis Child 95:406–413

    Article  PubMed  Google Scholar 

  25. Carbajal R, Chauvet X, Couderc S et al (1999) Randomised trial of analgesic effects of sucrose, glucose, and pacifiers in term neonates. BMJ 319:1393–1397

    Article  PubMed  CAS  Google Scholar 

  26. Curtis SJ, Jou H, Ali S et al (2007) A randomized controlled trial of sucrose and/or pacifiers as analgesia for infants receiving venipuncture in a pediatric emergency department. BMC Pediatr 7:27. doi:10:1186/1471-2431-7-27

    Article  PubMed  Google Scholar 

  27. Blass EM, Watt LB (1999) Sucking- and sucrose-induced analgesia in human newborns. Pain 83:611–623

    Article  PubMed  CAS  Google Scholar 

  28. Windram J, Grosse-Wortmann L, Shariat M et al (2012) Cardiovascular MRI without sedation or general anesthesia using a feed-and-sleep technique in neonates and infants. Pediatr Radiol 42:183-187

    Google Scholar 

  29. Fearon I, Kisilevsky BS, Mains SMJ et al (1997) Swaddling after heel lance: Age-specific effects on behavioural recovery in preterm infants. J Dev Behav Pediatr 18:222–232

    Article  PubMed  CAS  Google Scholar 

  30. Huang CM, Tung WS, Kuo LL et al (2004) Comparison of pain responses of premature infants to the heelstick between containment and swaddling. J Nurs Res 12:31–40

    Article  PubMed  Google Scholar 

  31. van Sleuwen BE, L’hoir MP, Engelberts AC et al (2006) Comparison of behaviour modification with and without swaddling as interventions for excessive crying. J Pediatr e2:512–517

    Google Scholar 

  32. Franco P, Seret N, van Hees JN et al (2005) Influence of swaddling on sleep and arousal characteristics of healthy infants. Pediatrics 115:1307–1311

    Article  PubMed  Google Scholar 

  33. Hansen SS (2009) Feed-and-sleep: a non-invasive and safe alternative to general anaesthesia when imaging very young children. Radiographer 56:5–8

    Google Scholar 

  34. Kuperman JM, Brown TT, Ahmadi ME et al (2011) Prospective motion correction improves diagnostic utility of pediatric MRI scans. Pediatr Radiol 41:1578–1582

    Article  PubMed  Google Scholar 

  35. Philbin MK, Taber KH, Hayman LA (1996) Preliminary report: changes in vital signs of term newborns during MRI. AJNR 17:1033–1036

    PubMed  CAS  Google Scholar 

  36. Taber KH, Hayman LA, Northrup SR et al (1998) Vital sign changes during infant magnetic resonance examinations. J Magr Reson Imaging 8:1252–1256

    Article  CAS  Google Scholar 

  37. Battin M, Maalouf EF, Counsell S et al (1998) Physiological stability of preterm infants during magnetic resonance imaging. Early Human Development 52:101–110

    Article  PubMed  CAS  Google Scholar 

  38. Gray L, Philbin MK (2004) Effects of the neonatal intensive care unit on auditory attention and distraction. Clin Perinatol 31:243–260

    Article  PubMed  Google Scholar 

  39. Waldron S, MacKinnon R (2007) Neonatal thermoregulation. Infant 3:101–104

    Google Scholar 

  40. Hammarlund K, Sedin G, Stromberg B (1982) Transepidermal water loss in newborn infants. VII. Relation to post-natal age in very pre-term and full-term appropriate for gestational age infants. Acta Paediatr Scand 71:369–374

    Article  PubMed  CAS  Google Scholar 

  41. Knobel R, Holditch-Davis D (2007) Thermoregulation and heat loss prevention after birth and during neonatal intensive-care unit stabilization of extremely low-birthweight infants. J Obstet Gynecol Neonatal Nurs 36:280–287

    Article  PubMed  Google Scholar 

  42. Menon G (2003) Neonatal long lines. Arch Dis Child Fetal Neonatal Ed 88:F260–F262. doi:10.1136/fn.88.4.F260

    Article  PubMed  CAS  Google Scholar 

  43. Stokowski LA (2005) Ensuring safety for infants undergoing Magnetic Resonance Imaging. Adv Neonat Care 5:14–27

    Article  Google Scholar 

  44. Shellock FG (2002) Magnetic Resonance Safety Update (2002): implants and devices. J Magn Reson Imaging 16:485–496

    Article  PubMed  Google Scholar 

  45. Shellock FG, Crues JV III (2002) MR safety and the American College of Radiology White Paper. AJR 178:1349–1352

    PubMed  Google Scholar 

  46. Kanal E, Borgstede JP, Barkovich AJ et al (2002) American College of Radiology White Paper on MRI Safety. AJR 178:1335–1347

    PubMed  Google Scholar 

  47. Lorenz BL (1990) Are you using the right IV pump. RN 53:31–36

    PubMed  CAS  Google Scholar 

  48. Cowan T (1997) Intravenous infusion pumps for hospital use. Prof Nurse 12:449–457

    PubMed  CAS  Google Scholar 

  49. Laswad T, Wintermark P, Alamo L et al (2009) Method for performing cerebral perfusion-weighted MRI in neonates. Pediatr Radiol 39(3):260–264

    Article  PubMed  Google Scholar 

  50. Nicholas JG, Geers AE (2007) Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe profound hearing loss. J Speech Lang Hear Res 50:1048–1062

    Article  PubMed  Google Scholar 

  51. Dubrulle F, Vincent C, Varoquaux A et al (2011) [Guidelines for the performance of MRI in patients with cochlear implants]. J Radiol 92:872–877

    Article  PubMed  CAS  Google Scholar 

  52. Food and Drug Administration (2002) Patient death illustrates importance of MRI room precautions [online] accessed January 2011. Available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/psn/transcript.cfm?show=1

  53. McJury M, Shellock FG (2000) Auditory noise associated with MR procedures: a review. J Magn Reson Imaging 12:37–45

    Article  PubMed  CAS  Google Scholar 

  54. More SR, Lim TC, Li M et al (2006) Acoustic noise characteristics of a 4 telsa MRI scanner. J Mag Reson Imag 23:388–397

    Article  Google Scholar 

  55. Price DL, De Wilde JP, Papadaki AM et al (2001) Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Mag Reson Imag 13:288–293

    Article  CAS  Google Scholar 

  56. American Academy of Pediatrics (1995) Joint committee on infant hearing 1994 Position Statement. Pediatrics 95:152–156

    Google Scholar 

  57. Reeves MJ, Brandreth M, Whitby EH et al (2010) Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging. Radiol 257:809–809

    Article  Google Scholar 

  58. Glover P, Hykin J, Gowland P et al (1995) An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol 68:1090–1094

    Article  PubMed  CAS  Google Scholar 

  59. European Agency for Safety and Health at Work (2005) Stop That Noise! Information pack [online]. Available at www.osha.europa.eu/en/Campaigns/ew2005/pressroom

  60. MHRA (2007) Safety guidelines for magnetic resonance imaging equipment in clinical use. MHRA DB2007(03) December 2007 ISBN 978 1 900731622

  61. Radomskij P, Schmidt MA, Heron CW et al (2002) Effect of MRI noise on cochlear function. Lancet 359:1485–1486

    Article  PubMed  CAS  Google Scholar 

  62. Health and Safety Executive (2010) Exposure calculators and ready-reckoners [online]. http://www.hse.gov.uk/noise/calculator.htm

  63. Kotarbinska E (2005) The influence of aging on the noise attenuation of ear-muffs. Noise Health 7:39–45

    Article  PubMed  CAS  Google Scholar 

  64. Nordell A, Lundh M, Horsch S et al (2009) The acoustic hood: a patient-independent device improving acoustic noise protection during neonatal magnetic imaging. Acta Paediatr 98:1278–1283

    Article  PubMed  Google Scholar 

  65. Health and Safety Executive (2005) The control of noise at work regulations [online]. http://www.hse.gov.uk/noise/regulations.htm

  66. Health Protection Agency (2008) Protection of patients and volunteers undergoing MRI procedures. Health Protection Agency, Oxford

    Google Scholar 

  67. Mechefske CK, Geris R, Gati JS et al (2001) Acoustic noise reduction in a 4 T MRI scanner. MAGMA 13:172–176

    Article  Google Scholar 

  68. Edelstein WA, Hedeen RA, Mallozzi RP et al (2001) Making MRI quieter. Magn Reson Imaging 20:155–163

    Article  Google Scholar 

  69. Katsunuma A, Takamori H, Sakakura Y et al (2002) Quiet MRI with novel acoustic noise reduction. MAGMA 13:139–144

    Article  PubMed  CAS  Google Scholar 

  70. McJury M, Stewart RW, Crawford D et al (1997) The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: some initial results. Magn Reson Imaging 15:319–322

    Article  PubMed  CAS  Google Scholar 

  71. Bourland JD, Nyenhuis JA, Schaefer DJ (1999) Physiologic effects of intense MRI gradient fields. Neuroimaging Clin North Am 9:363–377

    CAS  Google Scholar 

  72. Food and Drug Administration (1988) Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm073817.htm

  73. Commission IE (2002) International standard, medical equipment—part 2: particular requirements for the safety of magnetic resonance equipment for medical diagnosis. 2nd revision. Geneva: International Electrotechnical Commission 601:2–33

    Google Scholar 

  74. Shellock F, Sawyer-Glover A (2001) The magnetic resonance environment and implants, devices and materials. In: Shellock F (ed) Magnetic resonance procedures: health effects and safety. CRC Press, Boca Raton

    Google Scholar 

  75. Wang Z, Lin JC, Weihua M et al (2007) SAR and temperature: simulations and comparison to regulatory limits for MRI. J Magn Reson Imaging 26:437–441

    Article  PubMed  Google Scholar 

  76. Kussman BD, Mulkern RV, Holzman RS (2004) Iatrogenic Hyperthermia during cardiac magnetic resonance imaging. Anaesth Analg 99:1053–1055

    Article  Google Scholar 

  77. Bryan YF, Templeton TW, Nick TG et al (2006) Brain magnetic resonance imaging increases core body temperature in sedated children. Anaesth Analg 102:1674–1679

    Article  Google Scholar 

  78. Machata A-M, Willshke H, Kabon B et al (2009) Effect of brain magnetic resonance imaging on body core temperature in sedated infants and children. Br J Anaesth 102:385–389

    Article  PubMed  Google Scholar 

  79. Isaacson DL, Yanosky DJ, Jones RA et al (2011) Effect of MRI strength and propofol sedation on pediatric core temperature change. J Magn Reson Imaging 33:950–956

    Article  PubMed  Google Scholar 

  80. Dagia C, Ditchfield M (2008) 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 68:309–319

    Article  PubMed  Google Scholar 

  81. Blamire AM (2008) The technology of MRI—the next 10 years? Br J Radiol 81:601–617

    Article  PubMed  CAS  Google Scholar 

  82. Helle M, Jerosch-Herold M, Voges I et al (2011) Improved MRI of the neonatal heart: feasibility study using a knee coil. Pediatr Radiol 41:1429–1432

    Article  PubMed  Google Scholar 

  83. Vasanawala SS, Grafendorfer T, Calderon P et al (2011) Millimeter isotropic resolution volumetric pediatric abdominal MRI with a dedicated 32-channel phased array coil. Proceedings of the 19th Scientific Meeting of ISMRM, Montreal, p. 161

  84. Conklin J, Winter JD, Thompson RT et al (2008) High-contrast 3D neonatal brain imaging with combined T1- and T2-weighted MP-RAGE. Magn Reson Med 59:1190–1196

    Article  PubMed  Google Scholar 

  85. Dias SC, Olsen OE (2012) Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children. Pediatr Radiol P-RAD-11-00623. doi:10.1007/s00247-012-2395-1

  86. Liauw L, van der Grond J, van den Berg-Huysmans AA et al (2008) Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology 247:204–212

    Article  PubMed  Google Scholar 

  87. Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiol 245:848–854

    Article  Google Scholar 

  88. Conturo TE, McKinstry RC, Aronovitz JA et al (1995) Diffusion MRI: precision, accuracy and flow effects. NMR Biomed 8:307–332

    Article  PubMed  CAS  Google Scholar 

  89. Alderliesten T, de Vries LS, Benders MJ et al (2011) MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and ¹H MR spectroscopy. Radiology 261:235–242

    Article  PubMed  Google Scholar 

  90. Mayr M, Burkhalter F, Bongartz G (2009) Nephrogenic systemic fibrosis: clinical spectrum of disease. J Magn Reson Imaging 30:1289–1297

    Article  PubMed  Google Scholar 

  91. Prince MR, Zhang HL, Prowda JC et al (2009) Nephrogenic systemic fibrosis and its impact on abdominal imaging. Radiographics 29:1565–1574

    Article  PubMed  Google Scholar 

  92. Mendichovszky IA, Marks SD, Simcock CM et al (2008) Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol 38:489–496, quiz 602-603

    Article  PubMed  Google Scholar 

  93. Karcaaltincaba M, Oguz B, Haliloglu M (2009) Current status of contrast-induced nephropathy and nephrogenic systemic fibrosis in children. Pediatr Radiol 39(Suppl 3):382–384

    Article  PubMed  Google Scholar 

  94. Drug Safety Update (2010) Gadolinium-containing contrast agents: new advice to minimise the risk of nephrogenic systemic fibrosis. Medicines and Healthcare products Regulatory Agency (MHRA). 3:3–5 http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON087741

  95. Emond S, Brunelle F (2011) Gd-DOTA administration at MRI in children younger than 18 months of age: immediate adverse reactions. Pediatr Radiol 41:1401–1406

    Article  PubMed  Google Scholar 

  96. Thomsen HS, Marckmann P, Logager VB (2007) Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents. Cancer Imaging 24:130–137

    Article  Google Scholar 

  97. Huisman TA, Sorensen AG (2004) Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children. Eur Radiol 14:59–72

    Article  PubMed  Google Scholar 

  98. Pollock JM, Whitlow CT, Deibler AR et al (2008) Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR 29:1302–1307

    Article  PubMed  CAS  Google Scholar 

  99. Wintermark P, Hansen A, Gregas MC et al (2011) Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR 32:2023–2029

    Article  PubMed  CAS  Google Scholar 

  100. Chen J, Licht DJ, Smith SE et al (2009) Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke: initial experiences. J Magn Reson Imaging 29:282–290

    Article  PubMed  Google Scholar 

  101. Blüml S, Friedlich P, Erberich S et al (2004) MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: Initial experience. Radiology 231:594–601

    Article  PubMed  Google Scholar 

  102. Whitby EH, Griffiths PD, Lonneker-Lammers T et al (2004) Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible incubator with a built-in coil. Pediatrics 113:e150–e152

    Article  PubMed  Google Scholar 

  103. Saunders AN (1995) Incubator noise: a method to decrease decibels. Pediatr Nurs 21:265–268

    PubMed  CAS  Google Scholar 

  104. Byers JF, Waugh WR, Lowman LB (2006) Sound level exposure of high-risk infants in different environmental conditions. Neonatal Netw 25:25–32

    Article  PubMed  Google Scholar 

  105. Darcy AE, Hancock LE, Ware EJ (2008) A descriptive study of noise in the neonatal intensive care unit. Adv Neonatal Care 8:S16–S26

    PubMed  Google Scholar 

  106. Philbin MK, Gray L (2002) Changing levels of quiet in an intensive care nursery. J Perinatol 22:455–460

    Article  PubMed  Google Scholar 

  107. Johnson AN (2001) Neonatal response to control of noise inside the incubator. Pediatr Nurs 27:600–605

    PubMed  CAS  Google Scholar 

  108. O'Regan K, Filan P, Pandit N et al (2012) Image quality associated with the use of an MR-compatible incubator in neonatal neuroimaging. Br J Radiol 85:363–367

    Article  PubMed  Google Scholar 

  109. Benavente-Fernádez I, Lubián-López PS, Zuazo-Ojeda MA et al (2010) Safety of magnetic resonance imaging in preterm infants. Acta Paediatr 99:850–853

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the Addenbrooke's Charitable Trust, and the NIHR comprehensive Biomedical Research Centre award to Cambridge University Hospitals NHS Foundation Trust, in partnership with the University of Cambridge.

Conflicts of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen J. Arthurs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arthurs, O.J., Edwards, A., Austin, T. et al. The challenges of neonatal magnetic resonance imaging. Pediatr Radiol 42, 1183–1194 (2012). https://doi.org/10.1007/s00247-012-2430-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2430-2

Keywords

Navigation