Skip to main content

Advertisement

Log in

Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Because of the ability of blood-oxygen-level-dependent (BOLD) MRI to assess blood oxygenation changes within the microvasculature, this technique holds potential for evaluating early perisynovial changes in inflammatory arthritis.

Objective

To evaluate the feasibility of BOLD MRI to detect interval perisynovial changes in knees of rabbits with inflammatory arthritis.

Materials and methods

Rabbit knees were injected with albumin (n = 9) or saline (n = 6) intra-articularly, or were not injected (control knees, n = 9). Except for two rabbits (albumin-injected, n = 2 knees; saline-injected, n = 2 knees) that unexpectedly died on days 7 and 21 of the experiment, respectively, all other animals were scanned with BOLD MRI on days 0, 1, 7, 14, 21 and 28 after induction of arthritis. T2*-weighted gradient-echo MRI was performed during alternate 30 s of normoxia/hyperoxia. BOLD MRI measurements were compared with clinical, laboratory and histological markers.

Results

Percentage of activated voxels was significantly greater in albumin-injected knees than in contralateral saline-injected knees (P = 0.04). For albumin-injected knees (P < 0.05) and among different categories of knees (P = 0.009), the percentage of activated BOLD voxels varied over time. A quadratic curve for on-and-off BOLD difference was delineated for albumin- and saline-injected knees over time (albumin-injected, P = 0.047; saline-injected, P = 0.009). A trend toward a significant difference in synovial histological scores between albumin-injected and saline-injected knees was noted only for acute scores (P = 0.07).

Conclusion

As a proof of concept, BOLD MRI can depict perisynovial changes during progression of experimental arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stevens CR, Blake DR, Merry P, et al (1991) A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum 34:1508–1513

    Article  PubMed  CAS  Google Scholar 

  2. Edmonds SE, Blake DR, Morris CJ, et al (1993) An imaginative approach to synovitis—the role of hypoxic reperfusion damage in arthritis. J Rheumatol Suppl 37:26–31

    PubMed  CAS  Google Scholar 

  3. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    Article  PubMed  Google Scholar 

  4. Noseworthy MD, Bulte DP, Alfonsi J (2003) BOLD magnetic resonance imaging of skeletal muscle. Semin Musculoskelet Radiol 7:307–315

    Article  PubMed  Google Scholar 

  5. Novack P, Shenkin H, Bortin L, et al (1953) The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J Clin Invest 32:696–702

    Article  PubMed  CAS  Google Scholar 

  6. Sicard KM, Duong TQ (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25:850–858

    Article  PubMed  Google Scholar 

  7. Prisman E, Slessarev M, Han J, et al (2008) Comparison of the effect of independently controlled end-tidal pCO2 and pO2 on blood oxygen level-dependent (BOLD) MRI. J Magn Reson Imag 27:185–191

    Article  Google Scholar 

  8. Imrie RC (1976) Animal models of arthritis. Lab Anim Sci 26:345–351

    PubMed  CAS  Google Scholar 

  9. Cooke TDV (1988) Antigen-induced arthritis, polyarthritis, and tenosynovitis. In: Greenwald RA, Diamond HS (eds) CRC handbook of animal models for rheumatoid diseases. CRC Press, Boca Raton, pp 53–79

    Google Scholar 

  10. Strouse PJ, DiPietro MA, Teo EL, et al (1999) Power Doppler evaluation of joint effusions: investigation in a rabbit model. Pediatr Radiol 29:617–623

    Article  PubMed  CAS  Google Scholar 

  11. Strouse PJ, Londy F, DiPietro MA, et al (1999) MRI evaluation of infectious and non-infectious synovitis: preliminary studies in a rabbit model. Pediatr Radiol 29:367–371

    Article  PubMed  CAS  Google Scholar 

  12. Glover GH, Lai S (1998) Self-navigated spiral fMRI: interleaved versus single-shot. Magn Reson Med 39:361–368

    Article  PubMed  CAS  Google Scholar 

  13. Haller S, Wetzel SG, Radue EW, et al (2006) Mapping continuous neuronal activation without an ON-OFF paradigm: initial results of BOLD ceiling fMRI. Eur J Neurosci 24:2672–2678

    Article  PubMed  Google Scholar 

  14. Doria AS, Dick PT (2005) Region-of-interest-based analysis of clustered BOLD MRI data in experimental arthritis. Acad Radiol 12:841–852

    Article  PubMed  Google Scholar 

  15. Frahm J, Merboldt KD, Hanicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144

    Article  PubMed  CAS  Google Scholar 

  16. Field AS, Yen YF, Burdette JH, et al (2000) False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. AJNR 21:1388–1396

    PubMed  CAS  Google Scholar 

  17. Resnick D (1988) Common disorders of synovium-lined joints: pathogenesis, imaging abnormalities, and complications. AJR 151:1079–1093

    PubMed  CAS  Google Scholar 

  18. Hunneyball IM, Spowage M, Crossley MJ, et al (1986) Acute phase protein changes in antigen-induced mono-articular arthritis in rabbits and mice. Clin Exp Immunol 65:311–318

    PubMed  CAS  Google Scholar 

  19. Kane D, Roth J, Frosch M, et al (2003) Increased perivascular synovial membrane expression of myeloid-related proteins in psoriatic arthritis. Arthritis Rheum 48:1676–1685

    Article  PubMed  CAS  Google Scholar 

  20. Roth J, Teigelkamp S, Wilke M, et al (1992) Complex pattern of the myelo-monocytic differentiation antigens MRP8 and MRP14 during chronic airway inflammation. Immunobiology 186:304–314

    Article  PubMed  CAS  Google Scholar 

  21. Koizumi F, Matsuno H, Wakaki K, et al (1999) Synovitis in rheumatoid arthritis: scoring of characteristic histopathological features. Pathol Int 49:298–304

    Article  PubMed  CAS  Google Scholar 

  22. Oehler S, Neureiter D, Meyer-Scholten C, et al (2002) Subtyping of osteoarthritic synoviopathy. Clin Exp Rheumatol 20:633–640

    PubMed  CAS  Google Scholar 

  23. Kim HK, Kerr RG, Cruz TF, et al (1995) Effects of continuous passive motion and immobilization on synovitis and cartilage degradation in antigen induced arthritis. J Rheumatol 22:1714–1721

    PubMed  CAS  Google Scholar 

  24. Fleiss JL (1981) Statistical methods for rates and proportions. Wiley, New York

    Google Scholar 

  25. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London, pp 404–408

    Google Scholar 

  26. Svalastoga E, Kiaer T, Gronlund J (1989) Improved method to estimate oxygen consumption, diffusing capacity and blood flow of synovial membrane. Acta Vet Scand 30:113–119

    PubMed  CAS  Google Scholar 

  27. James MJ, Cleland LG, Rofe AM, et al (1990) Intraarticular pressure and the relationship between synovial perfusion and metabolic demand. J Rheumatol 17:521–527

    PubMed  CAS  Google Scholar 

  28. Simkin PA (1979) Synovial permeability in rheumatoid arthritis. Arthritis Rheum 22:689–696

    Article  PubMed  CAS  Google Scholar 

  29. Villringer A (2000) Physiologic changes during brain activation. In: Baert AL (ed) Functional MRI. Springer, Berlin, pp 1–13

    Google Scholar 

  30. Boxerman JL, Bandettini PA, Kwong KK, et al (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10

    Article  PubMed  CAS  Google Scholar 

  31. Mazurchuk R, Zhou R, Straubinger RM, et al (1999) Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response. Magn Reson Imaging 17:537–548

    Article  PubMed  CAS  Google Scholar 

  32. Gati JS, Menon RS, Ugurbil K, et al (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302

    Article  PubMed  CAS  Google Scholar 

  33. Ugurbil K, Hu X, Chen W, et al (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213

    Article  PubMed  CAS  Google Scholar 

  34. Yang Y, Wen H, Mattay VS, et al (1999) Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T. Neuroimage 9:446–451

    Article  PubMed  CAS  Google Scholar 

  35. Robinson SP, Rodrigues LM, Griffiths JR, et al (1999) Response of hepatoma 9618a and normal liver to host carbogen and carbon monoxide breathing. Neoplasia 1:537–543

    Article  PubMed  CAS  Google Scholar 

  36. Storgard CM, Stupack DG, Jonczyk A, et al (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest 103:47–54

    Article  PubMed  CAS  Google Scholar 

  37. Baltz ML, Gomer K, Davies AJ, et al (1980) Differences in the acute phase responses of serum amyloid P-component (SAP) and C3 to injections of casein or bovine serum albumin in amyloid-susceptible and -resistant mouse strains. Clin Exp Immunol 39:355–360

    PubMed  CAS  Google Scholar 

  38. Brasch RC, Li KC, Husband JE, et al (2000) In vivo monitoring of tumor angiogenesis with MR imaging. Acad Radiol 7:812–823

    Article  PubMed  CAS  Google Scholar 

  39. Lee SP, Silva AC, Ugurbil K, et al (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 42:919–928

    Article  PubMed  CAS  Google Scholar 

  40. Van Dijke CF, Peterfy CG, Brasch RC, et al (1999) MR imaging of the arthritic rabbit knee joint using albumin-(Gd-DTPA)30 with correlation to histopathology. Magn Reson Imaging 17:237–245

    Article  PubMed  Google Scholar 

  41. Shockley RP, LaManna JC (1988) Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Res 454:170–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Michael Noseworthy for setting up the MR sequences used in this study and for reviewing the first draft of the manuscript, Sharon Nancekivell for editorial assistance, Dr. Brian Feldman for advice about the design of the study, Dr. Geraldine Kent for help with the preparation of the albumin solution, Marianne Rogers for histological services, Jeff Alfonsi and Niels Celeghin for analysis of data, Man Khun Chan and Dr. Adele Khoskow for suggesting and testing laboratory surrogates for inflammation in rabbits, and Hillary Bruce and Mary Ancona for collaborating as MR imaging technologists in part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea S. Doria.

Additional information

In memoriam of Robert B. Salter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doria, A.S., Crawley, A., Gahunia, H. et al. Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis. Pediatr Radiol 42, 63–75 (2012). https://doi.org/10.1007/s00247-011-2194-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-011-2194-0

Keywords

Navigation