Skip to main content

Advertisement

Log in

Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations

  • ALARA CONCEPT IN PEDIATRIC IMAGING: ONCOLOGY
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

While the etiology of most childhood cancers is largely unknown, epidemiologic studies have consistently found an association between exposure to medical radiation during pregnancy and risk of childhood cancer in offspring. The relation between early life diagnostic radiation exposure and occurrence of pediatric cancer risks is less clear. This review summarizes current and historical estimated doses for common diagnostic radiologic procedures as well as the epidemiologic literature on the role of maternal prenatal, children’s postnatal and parental preconception diagnostic radiologic procedures on subsequent risk of childhood malignancies. Risk estimates are presented according to factors such as the year of birth of the child, trimester and medical indication for the procedure, and the number of films taken. The paper also discusses limitations of the methods employed in epidemiologic studies to assess pediatric cancer risks, the effects on clinical practice of the results reported from the epidemiologic studies, and clinical and public health policy implications of the findings. Gaps in understanding and additional research needs are identified. Important research priorities include nationwide surveys to estimate fetal and childhood radiation doses from common diagnostic procedures, and epidemiologic studies to quantify pediatric and lifetime cancer risks from prenatal and early childhood exposures to diagnostic radiography, CT, and fluoroscopically guided procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ries LA, Melbert D, Krapcho M et al (eds) (2008) SEER Cancer Statistics Review, 1975–2005. National Cancer Institute, Bethesda, MD, based on November 2007 SEER data submission, posted to the SEER web site (http://seer.cancer.gov/csr/1975_2005/)

  2. Steliarova-Foucher E, Stiller C, Lacour B et al (2005) International Classification of Childhood Cancer, 3rd ed. Cancer 103:1457–1467

    PubMed  Google Scholar 

  3. Ross JA, Spector LG (2006) Cancers in children. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention, 3rd ed. Oxford University Press, Bethesda, MD, p 1251–1261

    Google Scholar 

  4. Parkin DM, Kramarova E, Draper GJ et al (eds) (1998) IARC Scientific Publications No. 144: International Incidence of Childhood Cancer, Vol. II. International Agency for Research on Cancer (IARC), Lyon, France

  5. Ries LA, Smith MA, Gurney JG et al (eds) (1999) Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995, Pub. No. 99-4649. National Cancer Institute, SEER program, NIH, Bethesda, MD

  6. Stiller CA, Parkin DM (1996) Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull 52:682–703

    PubMed  Google Scholar 

  7. Parkin DM (1998) Epidemiology of cancer: global patterns and trends. Toxicol Lett 102–103:227–234

    PubMed  Google Scholar 

  8. Stewart AM, Webb J, Giles D et al (1956) Malignant disease in childhood and diagnostic irradiation in utero. Lancet ii:447

    Google Scholar 

  9. Stewart A, Webb J, Hewitt D (1958) A survey of childhood malignancies. Br Med J 1:1495–1508

    PubMed  Google Scholar 

  10. Wakeford R (1995) The risk of childhood cancer from intrauterine and preconceptional exposure to ionizing radiation. Environ Health Perspect 103:1018–1025

    PubMed  Google Scholar 

  11. Boice JD Jr, Land CE, Preston DL (1996) Ionizing radiation. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention. 2nd edn. Oxford University Press, New York, NY, p 319–346

    Google Scholar 

  12. Little J (1999) IARC Scientific publication no. 149: epidemiology of childhood cancer. International Agency for Research on Cancer (IARC), Lyon, France, pp 132–147

  13. ICRP (2003) Publication 90: biological effects after prenatal irradiation (embryo and fetus), pp 167–170

  14. Schulze-Rath R, Hammer GP, Blettner M (2008) Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiat Environ Biophys 47:301–312

    PubMed  Google Scholar 

  15. Bithell JF, Stiller CA (1988) A new calculation of the carcinogenic risk of obstetric X-raying. Stat Med 7:857–864

    PubMed  Google Scholar 

  16. Doll R, Wakeford R (1997) Risk of childhood cancer from fetal irradiation. Br J Radiol 70:130–139

    PubMed  Google Scholar 

  17. Boice JD Jr, Miller RW (1999) Childhood and adult cancer after intrauterine exposure to ionizing radiation. Teratology 59:227–233

    PubMed  Google Scholar 

  18. Mettler FA Jr (2007) Magnitude of radiation uses and doses in the United States: NCRP Scientific Committee 6-2 analysis of medical exposures. Annual meeting program—advances in radiation protection in medicine, Arlington, Virginia, pp 9–10

  19. Kim KP, Miller DL, Balter S et al (2008) Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys 94:211–227

    Article  PubMed  CAS  Google Scholar 

  20. UNSCEAR (2000) Sources and effects of ionizing radiation, vol. I. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  21. Hewitt JM, Shuttleworth PG, Nelthorpe PA (1989) Improving protection standards in dental radiography. In: Goldfinch EP (ed) Radiation protection—theory and practice. Institute of Physics, Bristol, pp 81–84

    Google Scholar 

  22. Hart D, Hillier MC et al (2007) Dose to patients from radiographic and fluoroscopic x-ray imaging procedures in the UK—2005 review. Health Protection Agency, Chilton, UK

    Google Scholar 

  23. Napier ID (1999) Reference doses for dental radiography. Br Dent J 186:392–396

    PubMed  CAS  Google Scholar 

  24. Hart D, Hillier MC et al (2002) Dose to patients from medical x-ray examinations in the UK—2000 review. National Radiological Protection Board, Chilton, UK

    Google Scholar 

  25. Shrimpton PC, Hillier MC et al (2005) Doses from computed tomography (CT) examinations in the UK—2003 review. National Radiological Protection Board, Chilton, UK

    Google Scholar 

  26. Shrimpton PC, Jones DG et al (1991) Survey of CT practice in the UK. Part 2—dosimetric aspects. National Radiological Protection Board, Chilton, UK

    Google Scholar 

  27. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    PubMed  CAS  Google Scholar 

  28. Brix G, Nagel HD, Stamm G et al (2003) Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur Radiol 13:1979–1991

    PubMed  CAS  Google Scholar 

  29. Gadd R, Mountford PJ, Oxtoby JW (1999) Effective dose to children and adolescents from radiopharmaceuticals. Nucl Med Commun 20:569–573

    PubMed  CAS  Google Scholar 

  30. Galanski M, Nagel HD, Stamm G (2006) Paediatric CT exposure practice in the Federal Republic of Germany—results of a nation-wide survey in 2005/2006. Hannover Medical School, Hannover, Germany

    Google Scholar 

  31. Onnasch DGW, Schroder FK, Fischer G et al (2007) Diagnostic reference levels and effective dose in paediatric cardiac catheterization. Brit J Radiol 80:177–185

    PubMed  CAS  Google Scholar 

  32. Piepsz A, Hahn K, Roca I et al (1990) A radiopharmaceuticals schedule for imaging in paediatrics. Paediatric Task Group European Association Nuclear Medicine. Eur J Nucl Med 17:127–129

    PubMed  CAS  Google Scholar 

  33. Land CE (1995) Studies of cancer and radiation dose among atomic bomb survivors. The example of breast cancer. JAMA 274:402–407

    PubMed  CAS  Google Scholar 

  34. Preston DL, Kusumi S, Tomonaga M et al (1994) Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 137:S68–S97

    PubMed  Google Scholar 

  35. Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64

    PubMed  CAS  Google Scholar 

  36. Rosenstein M, Beck T et al (1979) Handbook of selected tissue doses for projections common in pediatric radiology. Food and Drug Administration, Rockville MD

    Google Scholar 

  37. Mole RH (1990) Childhood cancer after prenatal exposure to diagnostic X-ray examinations in Britain. Br J Cancer 62:152–168

    PubMed  CAS  Google Scholar 

  38. Bewley DK, Laws JW, Myddleton CJ (1957) Maternal and foetal radiation dosage during obstetric radiographic examinations. Br J Radiol 30:286–290

    PubMed  CAS  Google Scholar 

  39. Clayton CG, Farmer FT, Warrick CK (1957) Radiation doses to the foetal and maternal gonads in obstetric radiography during late pregnancy. Br J Radiol 30:291–294

    PubMed  CAS  Google Scholar 

  40. Matthews JC, Miller H (1969) Radiation hazards from diagnostic radiology. A repeat survey over a small area. Br J Radiol 42:814–817

    PubMed  CAS  Google Scholar 

  41. HMSO (1960) Great Britain, Ministry of Health Committee on Radiological Hazards to Patients: second report of the Committee. HMSO, London, UK

    Google Scholar 

  42. Clark KC (1956) Positioning in radiography, 7th edn. Heineman Medical, London, UK

    Google Scholar 

  43. HMSO (1966) Great Britain, Ministry of Health Committee on Radiological Hazards to Patients: final report of the Committee. HMSO, London, UK

    Google Scholar 

  44. Osei EK, Faulkner K (1999) Fetal doses from radiological examinations. Br J Radiol 72:773–780

    PubMed  CAS  Google Scholar 

  45. Hart D, Jones DG et al (1994) Normalised organ doses for medical x-ray examinations calculated using Monte Carlo techniques. National Radiological Protection Board, Chilton, UK

    Google Scholar 

  46. Thomton FJ, Paulson EK, Yoshizumi TT et al (2003) Single versus multi-detector row CT: comparison of radiation doses and dose profiles. Acad Radiol 10:379–385

    PubMed  Google Scholar 

  47. Hurwitz LM, Yoshizumi T, Reiman RE et al (2006) Radiation dose to the fetus from body MDCT during early gestation. AJR 186:871–876

    PubMed  Google Scholar 

  48. Loevinger R, Budinger TF, Watson EE (1991) MIRD primer for absorbed dose calculations. Society of Nuclear Medicine, New York, NY

    Google Scholar 

  49. Russell JR, Stabin MG, Sparks RB et al (1997) Radiation absorbed dose to the embryo/fetus from radiopharmaceuticals. Health Phys 73:756–769

    PubMed  CAS  Google Scholar 

  50. CRCPD (2005) Nationwide evaluation of x-ray trends (NEXT): tabulation and graphical summary of 2001 survey of adult chest radiography. Conference of Radiation Control Program Directors, Frankfort, KY, p 77

    Google Scholar 

  51. Chodick G, Ronckers C, Ron E et al (2006) The utilization of pediatric computed tomography in a large Israeli Health Maintenance Organization. Pediatr Radiol 36:485–490

    PubMed  Google Scholar 

  52. Ghotbi N, Ohtsuru A, Ogawa Y et al (2006) Pediatric CT scan usage in Japan: results of a hospital survey. Radiat Med 24:560–567

    PubMed  Google Scholar 

  53. Macgregor DM, McKie L (2005) CT or not CT—that is the question. Whether ’tis better to evaluate clinically and x-ray than to undertake a CT head scan. Emerg Med J 22:541–543

    PubMed  CAS  Google Scholar 

  54. Broder J, Fordham LA, Warshauer DM (2007) Increasing utilization of computed tomography in the pediatric emergency department, 2000–2006. Emerg Radiol 14:227–232

    PubMed  Google Scholar 

  55. CRCPD (2007) Nationwide evaluation of x-ray trends (NEXT): tabulation and graphical summary of 2000 survey of computed tomography. Conference of Radiation Control Program Directors, Frankfort, KY, p 154

    Google Scholar 

  56. Mettler FA Jr., Wiest PW, Locken JA et al (2000) CT scanning: patterns of use and dose. J Radiol Prot 20:353–359

    PubMed  Google Scholar 

  57. Shrimpton PC, Hart D et al (1991) Survey of CT practice in the UK. Part 1—aspects of examination frequency and quality assurance. National Radiological Protection Board, Chilton, UK

    Google Scholar 

  58. NCI (2008) Radiation risks and pediatric computed tomography (CT): a guide for health care providers. Available via: http://www.cancer.gov/cancertopics/causes/radiation-risks-pediatric-CT

  59. Linton OW, Mettler FA Jr. (2003) National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR 181:321–329

    PubMed  Google Scholar 

  60. Bithell JF, Stewart AM (1975) Pre-natal irradiation and childhood malignancy: a review of British data from the Oxford Survey. Br J Cancer 31:271–287

    PubMed  CAS  Google Scholar 

  61. MacMahon B (1962) Prenatal x-ray exposure and childhood cancer. J Natl Cancer Inst 28:1173–1191

    PubMed  CAS  Google Scholar 

  62. Monson RR, MacMahon B (1984) Prenatal x-ray exposure and cancer in children. In: Boice JD Jr, Fraumeni JF Jr (eds) Radiation carcinogenesis: epidemiology and biological significance. Raven, New York, NY, pp 97–105

    Google Scholar 

  63. Knox EG, Stewart AM, Kneale GW, Gilman EA (1987) Prenatal irradiation and childhood cancer. J Soc Radiol Prot 7:177–189

    Google Scholar 

  64. Graham S, Levin ML, Lilienfeld AM et al (1966) Preconception, intrauterine, and postnatal irradiation as related to leukemia. Natl Cancer Inst Monogr 19:347–371

    PubMed  CAS  Google Scholar 

  65. Salonen T, Saxen L (1975) Risk indicators in childhood malignancies. Int J Cancer 15:941–946

    PubMed  CAS  Google Scholar 

  66. Kaplan HS (1958) An evaluation of the somatic and genetic hazards of the medical uses of radiation. Am J Roentgenol Radium Ther Nucl Med 80:696–706

    PubMed  CAS  Google Scholar 

  67. Polhemus DW, Koch R (1959) Leukemia and medical radiation. Pediatrics 23:453–461

    PubMed  CAS  Google Scholar 

  68. van Steensel-Moll HA, Valkenburg HA, Vandenbroucke JP et al (1985) Are maternal fertility problems related to childhood leukaemia. Int J Epidemiol 14:555–559

    PubMed  Google Scholar 

  69. Shu XO, Gao YT, Brinton LA et al (1988) A population-based case–control study of childhood leukemia in Shanghai. Cancer 62:635–644

    PubMed  CAS  Google Scholar 

  70. Magnani C, Pastore G, Luzzatto L et al (1990) Parental occupation and other environmental factors in the etiology of leukemias and non-Hodgkin’s lymphomas in childhood: a case–control study. Tumori 76:413–419

    PubMed  CAS  Google Scholar 

  71. Naumburg E, Bellocco R, Cnattingius S et al (2001) Intrauterine exposure to diagnostic X rays and risk of childhood leukemia subtypes. Radiat Res 156:718–723

    PubMed  CAS  Google Scholar 

  72. Shu XO, Jin F, Linet MS et al (1994) Diagnostic X-ray and ultrasound exposure and risk of childhood cancer. Br J Cancer 70:531–536

    PubMed  CAS  Google Scholar 

  73. Shu XO, Potter JD, Linet MS et al (2002) Diagnostic X-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype. Cancer Epidemiol Biomarkers Prev 11:177–185

    PubMed  Google Scholar 

  74. van Duijn CM, van Steensel-Moll HA, Coebergh JW et al (1994) Risk factors for childhood acute non-lymphocytic leukemia: an association with maternal alcohol consumption during pregnancy. Cancer Epidemiol Biomarkers Prev 3:457–460

    PubMed  Google Scholar 

  75. Bunin GR, Buckley JD, Boesel CP et al (1994) Risk factors for astrocytic glioma and primitive neuroectodermal tumor of the brain in young children: a report from the Children’s Cancer Group. Cancer Epidemiol Biomarkers Prev 3:197–204

    PubMed  CAS  Google Scholar 

  76. Preston-Martin S, Yu MC, Benton B et al (1982) N-Nitroso compounds and childhood brain tumors: a case–control study. Cancer Res 42:5240–5245

    PubMed  CAS  Google Scholar 

  77. Schuz J, Kaletsch U, Kaatsch P et al (2001) Risk factors for pediatric tumors of the central nervous system: results from a German population-based case–control study. Med Pediatr Oncol 36:274–282

    PubMed  CAS  Google Scholar 

  78. Olshan AF, Breslow NE, Falletta JM et al (1993) Risk factors for Wilms tumor. Report from the National Wilms Tumor Study. Cancer 72:938–944

    PubMed  CAS  Google Scholar 

  79. Winn DM, Li FP, Robison LL et al (1992) A case–control study of the etiology of Ewing’s sarcoma. Cancer Epidemiol Biomark Prev 1:525–532

    CAS  Google Scholar 

  80. Gilman EA, Kneale GW, Knox EG et al (1988) Pregnancy x-rays and childhood cancers. J Radiol Prot 8:3–8

    CAS  Google Scholar 

  81. UNSCEAR (1972) A report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, with annexes. United Nations Scientific Committee on the Effects Of Atomic Radiation, New York

    Google Scholar 

  82. Totter JR, MacPherson HG (1981) Do childhood cancers result from prenatal x-rays. Health Phys 40:511–524

    PubMed  CAS  Google Scholar 

  83. Gilman EA, Stewart AM, Knox EG et al (1989) Trends in obstetric radiography. J Radiol Prot 9:93–102

    CAS  Google Scholar 

  84. Harvey EB, Boice JD Jr, Honeyman M et al (1985) Prenatal x-ray exposure and childhood cancer in twins. N Engl J Med 312:541–545

    PubMed  CAS  Google Scholar 

  85. Rodvall Y, Pershagen G, Hrubec Z et al (1990) Prenatal X-ray exposure and childhood cancer in Swedish twins. Int J Cancer 46:362–365

    PubMed  CAS  Google Scholar 

  86. Carmichael JH, Berry RJ (1976) Diagnostic x-rays in late pregnancy and in the neonate. Lancet 1:351–352

    PubMed  CAS  Google Scholar 

  87. Chamberlain J (1978) Human benefits and costs of a national screening programme for neural-tube defects. Lancet 2:1293–1296

    PubMed  CAS  Google Scholar 

  88. Kendall BE, Darby SC, Harries SV et al (1980) A frequency survey of radiological examination carried out in national health service hospitals in Great Britain in 1977 for diagnostic purposes. National Radiological Protection Board Report. HSMO, London

    Google Scholar 

  89. Wall BF, Shrimpton PC (1980) Bone marrow dose in chest radiography: the posteroanterior vs. anteroposterior projection. Radiology 137:258–259

    PubMed  CAS  Google Scholar 

  90. Kendall GM, Wall BF, Darby SC (1989) X-ray exposures of the foetus. J Radiol Prot 9:285–293

    CAS  Google Scholar 

  91. Levi S (1997) The history of ultrasound in gynecology 1950–1980. Ultrasound Med Biol 23:481–552

    PubMed  CAS  Google Scholar 

  92. Cartwright RA, McKinney PA, Hopton PA et al (1984) Ultrasound examinations in pregnancy and childhood cancer. Lancet 2:999–1000

    PubMed  CAS  Google Scholar 

  93. Kinnier Wilson LM, Waterhouse JA (1984) Obstetric ultrasound and childhood malignancies. Lancet 2:997–999

    PubMed  CAS  Google Scholar 

  94. Sorahan T, Lancashire R, Stewart A et al (1995) Pregnancy ultrasound and childhood cancer: a second report from the Oxford Survey of Childhood Cancers. Br J Obstet Gynaecol 102:831–832

    PubMed  CAS  Google Scholar 

  95. Fajardo-Gutierrez A, Garduno-Espinosa J, Yamamoto-Kimura L et al (1993) Risk factors associated with the development of leukemia in children. Bol Med Hosp Infant Mex 50:248–257

    PubMed  CAS  Google Scholar 

  96. Hartley AL, Birch JM, McKinney PA et al (1988) The Inter-Regional Epidemiological Study of Childhood Cancer (IRESCC): past medical history in children with cancer. J Epidemiol Community Health 42:235–242

    PubMed  CAS  Google Scholar 

  97. Infante-Rivard C, Deadman JE (2003) Maternal occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukemia. Epidemiology 14:437–441

    PubMed  Google Scholar 

  98. Infante-Rivard C, Mathonnet G, Sinnett D (2000) Risk of childhood leukemia associated with diagnostic irradiation and polymorphisms in DNA repair genes. Environ Health Perspect 108:495–498

    PubMed  CAS  Google Scholar 

  99. Ager EA, Schuman LM, Wallace HM et al (1965) An epidemiological study of childhood leukemia. J Chronic Dis 18:113–132

    PubMed  CAS  Google Scholar 

  100. Howe GR, Burch JD, Chiarelli AM et al (1989) An exploratory case–control study of brain tumors in children. Cancer Res 49:4349–4352

    PubMed  CAS  Google Scholar 

  101. Daigle AE (1987) Epidemiologic study of etiologic factors in Ewing’s sarcoma (abstract). Diss Abstr Int 47:2861–B Available via http://www.proquest.com/products_pq/descriptions/dai.shtml

    Google Scholar 

  102. Hoffman DA, Lonstein JE, Morin MM et al (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J Natl Cancer Inst 81:1307–1312

    PubMed  CAS  Google Scholar 

  103. Ronckers CM, Doody MM, Lonstein JE et al (2008) Multiple diagnostic X-rays for spine deformities and risk of breast cancer. Cancer Epidemiol Biomark Prev 17:605–613

    Google Scholar 

  104. Preston-Martin S, Paganini-Hill A, Henderson BE et al (1980) Case–control study of intracranial meningiomas in women in Los Angeles County, California. J Natl Cancer Inst 65:67–73

    PubMed  CAS  Google Scholar 

  105. Preston DL, Cullings H, Suyama A et al (2008) Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 100:428–436

    PubMed  Google Scholar 

  106. Kneale GW, Stewart AM (1980) Pre-conception X-rays and childhood cancers. Br J Cancer 41:222–226

    PubMed  CAS  Google Scholar 

  107. Buckley JD, Robison LL, Swotinsky R et al (1989) Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Children’s Cancer Study Group. Cancer Res 49:4030–4037

    PubMed  CAS  Google Scholar 

  108. Bunin GR, Kramer S, Marrero O et al (1987) Gestational risk factors for Wilms’ tumor: results of a case–control study. Cancer Res 47:2972–2977

    PubMed  CAS  Google Scholar 

  109. Gold E, Gordis L, Tonascia J et al (1979) Risk factors for brain tumors in children. Am J Epidemiol 109:309–319

    PubMed  CAS  Google Scholar 

  110. Kramer S, Ward E, Meadows AT et al (1987) Medical and drug risk factors associated with neuroblastoma: a case–control study. J Natl Cancer Inst 78:797–804

    PubMed  CAS  Google Scholar 

  111. Magnani C, Pastore G, Luzzatto L et al (1989) Risk factors for soft tissue sarcomas in childhood: a case–control study. Tumori 75:396–400

    PubMed  CAS  Google Scholar 

  112. Roman E, Watson A, Beral V et al (1993) Case–control study of leukaemia and non-Hodgkin’s lymphoma among children aged 0–4 years living in west Berkshire and north Hampshire health districts. Br Med J (Clin Res Ed) 306:615–621

    CAS  Google Scholar 

  113. Shiono PH, Chung CS, Myrianthopoulos NC (1980) Preconception radiation, intrauterine diagnostic radiation, and childhood neoplasia. J Natl Cancer Inst 65:681–686

    PubMed  CAS  Google Scholar 

  114. Heston JF, Kelly JB, Meigs JW et al (1986) Forty-five years of cancer incidence in Connecticut: 1935–79. National Cancer Institute monograph no. 70. NIH, Bethesda, MD

    Google Scholar 

  115. Hakulinen T, Andersen A, Malker B et al (1986) Trends in cancer incidence in the Nordic countries. A collaborative study of the five Nordic Cancer Registries. Acta Pathol Microbiol Immunol Scand Suppl 288:1–151

    PubMed  CAS  Google Scholar 

  116. Stiller CA, Draper GJ (1982) Trends in childhood leukaemia in Britain 1968–1978. Br J Cancer 45:543–551

    PubMed  CAS  Google Scholar 

  117. Berrington de Gonzalez A, Ekbom A, Glass AG et al (2003) Comparison of documented and recalled histories of exposure to diagnostic x-rays in case–control studies of thyroid cancer. Am J Epidemiol 157:652–663

    PubMed  Google Scholar 

  118. Bhatia S, Robison LL, Oberlin O et al (1996) Breast cancer and other second neoplasms after childhood Hodgkin’s disease. N Engl J Med 334:745–751

    PubMed  CAS  Google Scholar 

  119. Neglia JP, Robison LL, Stovall M et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 98:1528–1537

    PubMed  Google Scholar 

  120. Ron E, Modan B, Boice JD Jr et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319:1033–1039

    PubMed  CAS  Google Scholar 

  121. Shore RE, Hildreth N, Dvoretsky P et al (1993) Thyroid cancer among persons given X-ray treatment in infancy for an enlarged thymus gland. Am J Epidemiol 137:1068–1080

    PubMed  CAS  Google Scholar 

  122. Sigurdson AJ, Ronckers CM, Mertens AC et al (2005) Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case–control study. Lancet 365:2014–2023

    PubMed  Google Scholar 

  123. Cardis E, Kesminiene A, Ivanov V et al (2005) Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 97:724–732

    Article  PubMed  Google Scholar 

  124. Tronko MD, Howe GR, Bogdanova TI et al (2006) A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst 98:897–903

    PubMed  Google Scholar 

  125. Shore RE (2002) Gaps in the epidemiology of in utero radiation-exposure effects. Int Congr Ser 1236:13–18

    Google Scholar 

  126. Spelic DC (2006) Dose and image quality on mammography trends during the first decade of MQSA. U.S. Food and Drug Administration, Rockville, MD

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health. The authors thank Annelie Landgren for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha S. Linet.

Additional information

Authors have no relevant financial relationships or potential conflicts of interest related to the material to be presented.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linet, M.S., Kim, K.p. & Rajaraman, P. Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol 39 (Suppl 1), 4–26 (2009). https://doi.org/10.1007/s00247-008-1026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-008-1026-3

Keywords

Navigation