Skip to main content

Advertisement

Log in

Cerebral metabolite differences in adolescents with low birth weight: assessment with in vivo proton MR spectroscopy

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Children with very low birth weight (VLBW) have a significantly increased risk of later neurodevelopmental problems, while infants born small for gestational age (SGA) at term are also at some risk of developing neurological impairment.

Objective

To investigate possible brain metabolite differences in adolescents with VLBW, SGA at term and controls by proton in vivo magnetic resonance spectroscopy (MRS) at 1.5 T.

Materials and methods

MR spectra were acquired from volumes localized in the left frontal lobe, containing mainly white matter (54 subjects). Peak areas of N-acetyl aspartate (NAA), choline (Cho) and creatine (Cr) were determined, and the peak area ratio of NAA to Cr, total Cho to Cr, or NAA to Cho calculated. Probabilistic neural network (PNN) analysis was performed utilizing the chemical shift region containing resonances from NAA, Cho and Cr as inputs.

Results

No significant difference in the peak area ratios could be found using the Kruskal-Wallis test. By application of PNN, a correct classification of 52 of the 54 adolescents with a sensitivity and specificity exceeding 93% for all groups was achieved.

Conclusion

Small, yet systematic, differences in brain metabolite distribution among the groups were confirmed by PNN analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skranes JS, Vik T, Nilsen G, et al (1993) Cerebral magnetic-resonance-imaging (MRI) and mental and motor function of very-low-birth-weight infants at one-year of corrected age. Neuropediatrics 24:256–262

    Article  PubMed  CAS  Google Scholar 

  2. Hollo O, Rautava P, Korhonen T, et al (2002) Academic achievement of small-for-gestational-age children at age 10 years. Arch Pediatr Adolesc Med 156:179–187

    PubMed  Google Scholar 

  3. Kutschera J, Urlesberger B, Maurer U, et al (2002) Small for gestational age – somatic, neurological and cognitive development until adulthood. Z Geburtshilfe Neonatol 206:65–71

    Article  PubMed  CAS  Google Scholar 

  4. Indredavik MS, Vik T, Heyerdahl S, et al (2004) Psychiatric symptoms and disorders in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed 89:F445–F450

    Article  PubMed  CAS  Google Scholar 

  5. Evensen KA, Vik T, Helbostad J, et al (2004) Motor skills in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed 89:F451–F455

    Article  PubMed  CAS  Google Scholar 

  6. Imamura K (2003) Proton MR spectroscopy of the brain with a focus on chemical issues. Magn Reson Med Sci 2:117–132

    Article  PubMed  CAS  Google Scholar 

  7. Arnold DL, Matthews PM (2005) Practical aspects of clinical applications of MRS in the brain. In: Young IL, Charles HC (eds) MR spectroscopy: clinical applications and techniques. Martin Dunitz, London, pp 139–159

    Google Scholar 

  8. Kreis R, Ernst T, Ross BD (1993) Development of the human brain – in-vivo quantification of metabolite and water-content with proton magnetic-resonance spectroscopy. Magn Reson Med 30:424–437

    Article  PubMed  CAS  Google Scholar 

  9. Toft PB, Leth H, Lou HC, et al (1994) T1, T2, and concentrations of brain-metabolites in neonates and adolescents estimated with H-1 MR spectroscopy. J Magn Reson Imaging 4:1–5

    Article  PubMed  CAS  Google Scholar 

  10. Kadota T, Horinouchi T, Kuroda C (2001) Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR 22:128–135

    PubMed  CAS  Google Scholar 

  11. Cady EB, Penrice J, Amess PN, et al (1996) Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 36:878–886

    Article  PubMed  CAS  Google Scholar 

  12. Kimura H, Fujii Y, Itoh S, et al (1995) Metabolic alterations in the neonate and infant brain during development – evaluation with proton MR spectroscopy. Radiology 194:483–489

    PubMed  CAS  Google Scholar 

  13. Moore GJ (1998) Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr Radiol 28:805–814

    Article  PubMed  CAS  Google Scholar 

  14. Yeo RA, Hill D, Campbell R, et al (2000) Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation. Dev Neuropsychol 17:143–159

    Article  PubMed  CAS  Google Scholar 

  15. Ford CC, Griffey RH, Matwiyoff NA, et al (1992) Multivoxel H-1-MRS of stroke. Neurology 42:1408–1412

    PubMed  CAS  Google Scholar 

  16. Friedman SD (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52:1384–1391

    PubMed  CAS  Google Scholar 

  17. Barkovich AJ, Baranski K, Vigneron D, et al (1999) Proton MR spectroscopy for time evaluation of brain injury in asphyxiated, term neonates. AJNR 20:1399–1405

    PubMed  CAS  Google Scholar 

  18. Filippi CG, Ulug AM, Deck M, et al (2002) Developmental delay in children: assessment with proton MR spectroscopy. AJNR 23:882–888

    PubMed  Google Scholar 

  19. Zimmerman RA, Wang ZJ (1997) The value of proton MR spectroscopy in pediatric metabolic brain disease. AJNR 18:1872–1879

    PubMed  CAS  Google Scholar 

  20. Shu SK, Ashwal S, Holshouser BA, et al (1997) Prognostic value of H-1-MRS in perinatal CNS insults. Pediatr Neurol 17:309–318

    Article  PubMed  CAS  Google Scholar 

  21. Holshouser BA, Ashwal S, Luh GY, et al (1997) Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 202:487–496

    PubMed  CAS  Google Scholar 

  22. Garnett MR, Blamire AM, Corkill RG, et al (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123:2046–2054

    Article  PubMed  Google Scholar 

  23. Usenius JP, Tuohimetsa S, Vainio P, et al (1996) Automated classification of human brain tumours by neural network analysis using in vivo H1 magnetic resonance spectroscopic metabolite phenotypes. Neuroreport 7:1597–1600

    Article  PubMed  CAS  Google Scholar 

  24. Preul MC, Caramanos Z, Collins DL, et al (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2:323–325

    Article  PubMed  CAS  Google Scholar 

  25. Bakken IJ, Axelson D, Kvistad KA, et al (1999) Applications of neural network analyses to in vivo H-1 magnetic resonance spectroscopy of epilepsy patients. Epilepsy Res 35:245–252

    Article  PubMed  CAS  Google Scholar 

  26. Axelson D, Bakken IJ, Gribbestad IS, et al (2002) Applications of neural network analyses to in vivo H-1 magnetic resonance spectroscopy of Parkinson disease patients. J Magn Reson Imaging 16:13–20

    Article  PubMed  Google Scholar 

  27. Despagne F, Massart DL (1998) Neural networks in multivariate calibration. Analyst 123:157R–178R

    Article  PubMed  CAS  Google Scholar 

  28. Skranes JS, Martinussen M, Smevik O, et al (2005) Cerebral MRI findings in very-low-birth-weight and small-for-gestational-age children at 15 years of age. Pediatr Radiol 35:758–765

    Article  PubMed  Google Scholar 

  29. Naressi A, Couturier C, Castang I, et al (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286

    Article  PubMed  CAS  Google Scholar 

  30. Forshed J, Schuppe-Koistinen I, Jacobsson SP (2003) Peak alignment of NMR signals by means of a genetic algorithm. Anal Chim Acta 487:189–199

    Article  CAS  Google Scholar 

  31. Lee GC, Woodruff DL (2004) Beam search for peak alignment of NMR signals. Anal Chim Acta 513:413–416

    Article  CAS  Google Scholar 

  32. Specht DF (1990) Probabilistic neural networks. Neural Netw 3:109–118

    Article  Google Scholar 

  33. Lucasius CB, Kateman G (1993) Understanding and using genetic algorithms: Part 1 Concepts, properties and context. Chem Intell Lab Syst 19:1–33

    Article  CAS  Google Scholar 

  34. Kemsley EK (1996) Discriminant analysis of high-dimensional data: comparison of principal components analysis and partial least squares data reduction methods. Chem Intell Lab Syst 33:47–61

    Article  CAS  Google Scholar 

  35. Meyer B, Hansen T, Nute D, et al (1991) Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks. Science 251:542–544

    Article  PubMed  CAS  Google Scholar 

  36. Smith LM, Chang L, Yonekura ML, et al (2001) Brain proton magnetic resonance spectroscopy and imaging in children exposed to cocaine in utero. Pediatrics 107:227–231

    Article  PubMed  CAS  Google Scholar 

  37. Horska A, Kaufmann WE, Brant LJ, et al (2002) In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J Magn Reson Imaging 15:137–143

    Article  PubMed  Google Scholar 

  38. Miller SP, Vigneron DB, Henry RG, et al (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 16:621–632

    Article  PubMed  Google Scholar 

  39. Nagy Z, Westerberg H, Skare S, et al (2003) Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr Res 54:672–679

    Article  PubMed  Google Scholar 

  40. Skranes JS, Nilsen G, Smevik O, et al (1998) Cerebral MRI of very low birth weight children at 6 years of age compared with the findings at 1 year. Pediatr Radiol 28:471–475

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tone F. Bathen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bathen, T.F., Sjöbakk, T.E., Skranes, J. et al. Cerebral metabolite differences in adolescents with low birth weight: assessment with in vivo proton MR spectroscopy. Pediatr Radiol 36, 802–809 (2006). https://doi.org/10.1007/s00247-006-0159-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-006-0159-5

Keywords

Navigation