Skip to main content
Log in

Bone-mineral density deficits from childhood cancer and its therapy

A review of at-risk patient cohorts and available imaging methods

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The growing population of childhood cancer survivors—currently estimated at 1 in 900 young adults aged 15–45 years—underscores the importance of studying long-term complications of oncotherapy. While these patients are returning to the mainstream of life, they carry with them toxicities from prior therapy that may compound or potentiate changes typically seen with the normal aging process. Skeletal toxicities such as scoliosis, craniofacial dysplasia, and limb-length discrepancy are readily apparent. However, others such as osteoporosis and osteonecrosis are silent until they reach advanced stages when attempts at amelioration may be unsuccessful. This review addresses bone-mineral density deficits that may predispose childhood cancer survivors to earlier onset and more severe osteopenia and osteoporosis than the normal population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parisi MT, Fahmy JL, Kaminsky CK, et al (1999) Complications of cancer therapy in children: a radiologist’s guide. Radiographics19:283–297

  2. Meadows AT, Hobbie WL (1986) The medical consequences of cure. Cancer 58[Suppl 2]:524–528

  3. Green DM (2002) Paediatric update. Eur J Cancer 38:1251–1253

    Article  Google Scholar 

  4. Bleyer WA (1990) The impact of childhood cancer on the United States and the world. CA Cancer J Clin 40:355–367

    CAS  PubMed  Google Scholar 

  5. Hartman C, Hochberg Z, Shamir R (2003) Osteoporosis in pediatrics. Isr Med Assoc J 5:509–515

    PubMed  Google Scholar 

  6. Baker SS, Cochran WJ, Floes CA, et al (1999) American Academy of Pediatrics. Committee on Nutrition: calcium requirements of infants, children, and adolescents. Pediatrics 104:1152–1157

    CAS  PubMed  Google Scholar 

  7. Matkovic V (1992) Calcium and peak bone mass. J Intern Med 231:151–160

    Google Scholar 

  8. Matkovic V (1992) Osteoporosis as a pediatric disease: role of calcium and heredity. J Rheumatol 19[Suppl 33]:54–59

  9. Horwath C, Parnell WR, Wilson NC, et al (2001) Attaining optimal bone status:lessons learned from the 1997 National Nutrition Survey. N Z Med J 114:138–141

    CAS  PubMed  Google Scholar 

  10. Rousseau ME (1997) Dietary prevention of osteoporosis. Lippincott’s Primary Care Pract 1:307–319

  11. Weyer C, Linkeschowa R, Heise T, et al (1998) Implications of the traditional and the new ACS physical activity recommendations on weight reduction in dietary treated obese subjects. Int J Obes Relat Metab Disord 22:1071–1078

    Article  CAS  PubMed  Google Scholar 

  12. Camaione DN, Burns KJ, Chatterton CT (1997) Counseling for physical activity: what primary-care physicians should know. Conn Med 61:391–395

    CAS  PubMed  Google Scholar 

  13. Ulrich CM, Georgiou CC, Gillis DE, et al (1999) Lifetime physical activity is associated with bone mineral density in premonopausal women. J Womens Health 8:365–375

    CAS  PubMed  Google Scholar 

  14. The Surgeon General’s Report on Nutrition and Health (1988) U.S. Department of Health and Human Services, Public Health Service, Washington, D.C.

  15. Bianchi ML (2002) Glucocorticoids and bone: some general remarks and some special observations in pediatric patients. Calcif Tissue Int 70:384–390

    Article  CAS  PubMed  Google Scholar 

  16. Kaste SC, Chesney RW, Hudson MM, et al (1999) Bone mineral status during and after therapy of childhood cancer: an increasing population with multiple risk factors for impaired bone health. J Bone Miner Res 14:2010–2014

    CAS  PubMed  Google Scholar 

  17. Kaste SC, Jones-Wallace, D, Rose SR, et al (2001) Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: frequency of occurrence and risk factors for their development. Leukemia 15:728–734

    Article  CAS  PubMed  Google Scholar 

  18. Arikoski P, Komulainen J, Riikonen P, et al (1999) Impaired development of bone mineral density during chemotherapy—a prospective analysis of 46 newly diagnosed children with cancer. J Bone Miner Res 14:2002–2009

    Google Scholar 

  19. Arikoski P, Komulainen J, Riikonen P, et al (1999) Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a one year propsective study. J Clin Endocrinol Metab 84:3174–3181

    CAS  PubMed  Google Scholar 

  20. Arikoski P, Komulainen J, Voutilainen R, et al (1998) Reduced bone mineral density in long-term survivors of childhood acute lymphoblastic leukaemia J Pediatr Hematol Oncol 20:234–240

    Google Scholar 

  21. Gilsanz V, Carlson ME, Roe TF, et al (1990) Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr 117:238–244

    CAS  PubMed  Google Scholar 

  22. Tillmann V, Darlington AS, Eiser C, et al (2002) Male sex and low physical activity are associated with reduced spine bone mineral density in survivors of childhood acute lymphoblastic leukemia. J Bone Miner Res 17:1073–1080

    Google Scholar 

  23. Warner JT, Bell W, Webb DKH, et al (1998) Daily energy expenditure and physical activity in survivors of childhood malignancy Pediatr Res 43:607–613

    CAS  Google Scholar 

  24. Jenney MEM, Levitt GA (2002) The quality of survival after childhood cancer. Eur J Cancer 38:1241–1250

    Article  CAS  PubMed  Google Scholar 

  25. Jenney MEM, Faragher EB, Morris-Jones PH, et al (1995) Lung function and exercise tolerance in survivors of childhood malignancy. Med Pediatr Oncol 24:222–230

    CAS  PubMed  Google Scholar 

  26. Eastell R, Lambert H (2002) Diet and healthy bones. Calcif Tissue Int 70:400–404

    Article  CAS  PubMed  Google Scholar 

  27. Wang MC, Crawford PB, Hudes M, et al (2003) Diet in midpuberty and sedentary activity in prepuberty predict peak bone mass. Am J Clin Nutr 77:495–503

    CAS  PubMed  Google Scholar 

  28. Byrd R (1985) Late effects of treatment of cancer in children. Pediatr Clin N Am 32:835–857

    CAS  Google Scholar 

  29. Leonard MB (2003) Assessment of bone health in children and adolescents with cancer: promises and pitfalls of current techniques. Med Pediatr Oncol 41:198–207

    Article  PubMed  Google Scholar 

  30. Robson H, Anderson E, Eden OB, et al (1998) Chemotherapeutic agents used in the treatment of childhood malignancies have direct effects on the growth plate chondrocyte proliferation. J Endocrinol 157:225–235

    CAS  PubMed  Google Scholar 

  31. Neglia JP, Nesbit ME Jr (1993) Care and treatment of long-term survivors of childhood cancer. Cancer 71:3386–3391

    CAS  PubMed  Google Scholar 

  32. Davies JH, Evans BAJ, Jenney MEM, et al (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cell numbers. Calcif Tissue Int 70:408–415

    CAS  PubMed  Google Scholar 

  33. Melton LJ, Chrischilles EA, Cooper C, et al (1992) Perspective: how many women have osteoporosis? J Bone Miner Res 7:1005–1010

    PubMed  Google Scholar 

  34. Gilsanz V (1998) Bone density in children: a review of the available techniques and indications. Eur J Radiol 26:177–182

    CAS  PubMed  Google Scholar 

  35. Leonard M (2002) Dual energy x-ray absorptiometry: shortcomings in the assessment of bone health in children. Calcif Tissue Int 70:355–383 (abstract)

    Article  Google Scholar 

  36. McKay H (2002) Beyond DXA: is MRI a useful tool for the assessment of bone in children? Calcif Tissue Int 70:355–383 (abstract)

    Article  Google Scholar 

  37. Lequin MH, van der Sluis M, van Rijn RR, et al (2002) Bone mineral assessment with tibial ultrasonometry and dual-energy x-ray absorptiometry in long-term survivors of acute lymphoblastic leukemia in childhood. J Clin Densitom 5:167–173

    CAS  PubMed  Google Scholar 

  38. Nysom K, Holm K, Michaelsen KF, et al (1998) Bone mass after treatment for acute lymphoblastic leukemia in childhood. J Clin Oncol 16:3752–3760

    CAS  PubMed  Google Scholar 

  39. Warner JT, Evans WD, Webb DKH, et al (1999) Relative osteopenia after treatment for acute lymphoblastic leukemia Pediatr Res 45:544–551

    CAS  Google Scholar 

  40. Henderson RC, Madsen CD, Davies C, et al (1996) Bone density in survivors of childhood malignancies. J Pediatr Hematol Oncol 18:367–371

    Article  CAS  PubMed  Google Scholar 

  41. Atkinson SA, Halton JM, Bradley C, et al (1998) Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs, and nutrition. Int J Cancer [Suppl] 11:35–39

    Google Scholar 

  42. Strauss AJ, Su JT, Kimball Dalton VM, et al (2001) Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 19:3066–3072

    CAS  PubMed  Google Scholar 

  43. Brennan BM, Rahim A, Adams JA, et al (1999) Reduced bone mineral density in young adults following cure of acute lymphoblastic leukaemia in childhood. Br J Cancer 79:1859–1863

    CAS  PubMed  Google Scholar 

  44. Kadan-Lottick N, Marshall JA, Baron AE, et al (2001) Normal bone mineral density after treatment for childhood acute lymphoblastic leukemia diagnosed between 1991 and 1998. J Pediatr 138:898–904

    Article  CAS  PubMed  Google Scholar 

  45. Swiatkiewicz V, Wysocki M, Odrowaz-Sypniewska G, et al (2003) Bone mass and bone mineral metabolism at diagnosis and after intensive treatment in children with acute lymphoblastic leukemia (DOI 10.1002/mpo.10415). Med Pediatr Oncol 41:578–580

    Article  PubMed  Google Scholar 

  46. Gurney JG, Kadan-Lottick NS, Packer RJ, et al (2003) Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer. 97:663–673

    Google Scholar 

  47. Hesseling PB, Hough SF, Nel ED, et al (1998) Bone mineral density in long-term survivors of childhood cancer. Int J Cancer [Suppl] 11:44–47

    Google Scholar 

  48. Barr RD, Simpson T, Webber CE, et al (1998) Osteopenia in children surviving brain tumors. Eur J Cancer 34:873–877

    Article  CAS  PubMed  Google Scholar 

  49. Mithal NP, Almond MK, Evans K, et al (1993) Br J Radiol 66:814–816

    CAS  PubMed  Google Scholar 

  50. Kaste SC, Shidler TJ, Tong X, et al (2004) Bone mineral density and osteonecrosis in survivors of childhood allogeneic bone marrow transplantation. Bone Marrow Transplant. (in press)

  51. Daniels MW, Wilson DM, Pagauntalan HG, et al (2003) Bone mineral density in pediatric transplant recipients. Transplantation 76:673–678

    Article  PubMed  Google Scholar 

  52. Kashyap A, Kandeel F, Yamauchi D, et al (2000) Effects of allogeneic bone marrow transplantation on recipient bone mineral density: a prospective study. Biol Blood Marrow Transplant 6:344–351

    CAS  PubMed  Google Scholar 

  53. Bhatia S, Ramsay NK, Weisdorf D, et al (1998) Bone mineral density in patients undergoing bone marrow transplantation for myeloid malignancies. Bone Marrow Transplant 22:87–90

    Article  CAS  PubMed  Google Scholar 

  54. Henderson RC, Madsen CD, Davis C, et al (1996) Bone density in survivors of childhood malignancies. J Pediatr Hematol Oncol 18: 367–371

    Article  CAS  PubMed  Google Scholar 

  55. Holzer G, Krepler MA, Grampp S, et al (2003) Bone mineral density in long-term survivors of highly malignant osteosarcoma. J Bone Joint Surg Br 85:231–237

    Google Scholar 

  56. National Osteoporosis Foundation. (1998) Physician’s guide to prevention and treatment of osteoporosis. Exerpta, Belle Mead

  57. Plotkin H (2003) Mind your T’s and Z’s. J Bone Joint Surg Am 85:1390–1391

    Google Scholar 

  58. Genant HK, Engelke K, Fuerst T, et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    CAS  PubMed  Google Scholar 

  59. Bonnick SL (1998) Densitometry techniques in medicine today. In: Bonnick SL (ed) Bone densitometry in clinical practice, application and interpretation. Humana Press, Totwa, pp 1–30

  60. Cann CE (1987) A rational approach to radiation exposure in bone densitometry. Radiology 165:184

    Google Scholar 

  61. ICRP Publication 60 (1991) 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 21:1–3

    Google Scholar 

  62. Kalendar WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporosis Int 2:82–87

    Google Scholar 

  63. Lewis MK, Blake GM, Fogelman I (1994) Patient dose in dual x-ray absorptiometry. Osteoporosis Int 4:11–15

    CAS  Google Scholar 

  64. Mindways Software (1998) Bone densitometry and radiation exposure. Informational flyer

  65. Lantz H, Samuelson G, Bratteby LE, et al (1999) Differences in whole body measurements by DXA scanning using two Lunar DPX-L machines. Int J Obes Relat Metab Disord 23:764–770

    Article  CAS  PubMed  Google Scholar 

  66. Gilsanz V (1998) Bone density in children: a review of the available techniques and indications Eur J Radiol 26:177–182

    Google Scholar 

  67. Schoenau E (2002) QCT and peripheral QCT. Calcif Tissue Int 70:355–383 (abstract)

    Article  Google Scholar 

  68. Hoffmeister BK, Whitten SA, Kaste SC, et al (2002) Effect of collagen and mineral content on the high frequency ultrasonic properties of human cancellous bone. Osteoporosis Int 13:26–32

    Article  CAS  Google Scholar 

  69. Lappe JM, Recker RR, Malleck MK, et al (1995) Patellar ultrasound transmission velocity in healthy children and adolescents. Bone 16[Suppl 4]:251S–256S

  70. Zewekh JE, Antich PP, Sakhaee K, et al (1991) Assessment by reflection ultrasound method of the effect of intermittent slow-release sodium fluoride calcium citrate therapy on material strength of bone. J Bone Mineral Res 6:239–244

    Google Scholar 

  71. Brandenberger GH (1993) Clinical determination of bone quality: is ultrasound an answer? Calcif Tissue Int 53[Suppl1]:S151–156

  72. Brukx LJ, Waelkens JJ (2003) Evaluation of the usefulness of a quantitative ultrasound device screening of bone mineral density in children. Ann Hum Biol 30:304–315

    CAS  PubMed  Google Scholar 

  73. Hand D, Gluer CC, Njeh CF (1998) Ultrasonic evaluation of osteoporosis. In: Meunier PJ (ed) Osteoporosis: diagnosis and management. Mosby, St Louis, pp 59–78

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue C. Kaste.

Additional information

This study was supported in part by grants P30 CA-21765 and P01 CA-20180 from the National Cancer Institute, a Center of Excellence grant from the state of Tennessee from the National Institutes of Health and by the American Lebanese Syrian Associated Charities (ALSAC)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaste, S.C. Bone-mineral density deficits from childhood cancer and its therapy. Pediatr Radiol 34, 373–378 (2004). https://doi.org/10.1007/s00247-003-1132-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-003-1132-1

Keywords

Navigation