Skip to main content
Log in

Adaptive Growth of the Ductus Arteriosus and Aortic Isthmus in Various Ductus-Dependent Complex Congenital Heart Diseases

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Background

The ductus arteriosus (DA) is critical in maintaining postnatal circulation in neonates with obstructed systemic circulation (OSC) and pulmonary circulation (OPC). We hypothesized that the size of the DA and aortic isthmus (AoI) undergoes adaptive growth in utero to counteract the hemodynamic challenges in these congenital heart diseases (CHD).

Methods

Postnatal echocardiograms of neonates diagnosed prenatally with ductal-dependent CHD who were started on prostaglandins within 24 h of birth were reviewed. We assessed the cross-sectional area of the aortic valve opening, pulmonary valve opening, AoI, and DA by calculating (diameter)2/body surface area. Neonates were classified into OSC or OPC then subgrouped depending upon the patency of semilunar valves: OSC with and without aortic atresia (OSC-AA and OSC-nAA, respectively) and OPC with and without pulmonary atresia (OPC-PA and OPC-nPA, respectively).

Results

Ninety-four cases were studied. The DA in OSC was significantly larger than OPC, and the DA in OSC-AA was significantly larger than OSC-nAA. The size of the AoI was significantly larger in OPC than OSC and larger in OSC-AA than OSC-nAA. Within the OSC-nAA group, there was no significant difference in the size of the DA, AoI, or pulmonary valve opening between those with retrograde flow (RF) at the AoI and without (nRF) except the aortic valve opening was significantly larger in nRF. All groups had comparable cross-sectional areas of systemic output.

Conclusions

Our findings suggest that DA and AoI show compensatory growth to maintain critical blood flow to vital organs against primary anatomical abnormalities in ductus-dependent CHD. (249 words)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Aortic atresia

AoI:

Aortic isthmus

AS:

Aortic stenosis

AVO:

Aortic valve opening

BSA:

Body surface area

CoA:

Coarctation of aorta

CCAVC:

Complete common atrioventricular canal

CHD:

Congenital heart disease

DA:

Ductus arteriosus

DAo:

Descending aorta

DORV:

Double outlet right ventricle

HLHS:

Hypoplastic left heart syndrome

IVS:

Intact ventricular septum

LV:

left ventricle/ventricular

MA:

Mitral Atresia

MS:

Mitral stenosis

n:

Without

OPC:

Obstructed pulmonary circulation

OSC:

Obstructed systemic circulation

PA:

Pulmonary atresia

PDA:

Patent ductus arteriosus

PGE1:

Prostaglandin E1

PS:

Pulmonary stenosis

PVO:

Pulmonary valve opening

RF:

Retrograde flow

TOF:

tetralogy of Fallot

References

  1. Machii M, Becker AE (1997) Morphologic features of the normal aortic arch in neonates, infants, and children pertinent to growth. Ann Thorac Surg 64:511–515. https://doi.org/10.1016/S0003-4975(97)00445-1

    Article  CAS  PubMed  Google Scholar 

  2. Rudolph AM, Heymann MA, Spitznas U (1972) Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol 30:514–525. https://doi.org/10.1016/0002-9149(72)90042-2

    Article  CAS  PubMed  Google Scholar 

  3. Tynan D, Alphonse J, Henry A, Welsh AW (2016) The aortic isthmus: a significant yet underexplored Watershed of the fetal circulation. Fetal Diagn Ther 40:81–93. https://doi.org/10.1159/000446942

    Article  PubMed  Google Scholar 

  4. Rudolph AM (2010) Congenital cardiovascular malformations and the fetal circulation. Arch Dis Child Fetal Neonatal Ed 95:F132–136. https://doi.org/10.1136/adc.2007.128777

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz A, Cruz-Lemini M, Masoller N, Sanz-Cortes M, Ferrer Q, Ribera I, Martinez JM, Crispi F, Arevalo S, Gomez O, Perez-Hoyos S, Carreras E, Gratacos E, Llurba E (2017) Longitudinal changes in fetal biometry and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 49:379–386. https://doi.org/10.1002/uog.15970

    Article  CAS  PubMed  Google Scholar 

  6. Hahn E, Szwast A, Cnota J 2nd, Levine JC, Fifer CG, Jaeggi E, Andrews H, Williams IA (2016) Association between fetal growth, cerebral blood flow and neurodevelopmental outcome in univentricular fetuses. Ultrasound Obstet Gynecol 47:460–465. https://doi.org/10.1002/uog.14881

  7. Mebius MJ, Clur SAB, Vink AS, Pajkrt E, Kalteren WS, Kooi EMW, Bos AF, du Marchie Sarvaas GJ, Bilardo CM (2019) Growth patterns and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 53:769–778. https://doi.org/10.1002/uog.19102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kowalski WJ, Dur O, Wang Y, Patrick MJ, Tinney JP, Keller BB, Pekkan K (2013) Critical transitions in early embryonic aortic arch patterning and hemodynamics. PLoS ONE 8:e60271. https://doi.org/10.1371/journal.pone.0060271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lindsey SE, Menon PG, Kowalski WJ, Shekhar A, Yalcin HC, Nishimura N, Schaffer CB, Butcher JT, Pekkan K (2015) Growth and hemodynamics after early embryonic aortic arch occlusion. Biomech Model Mechanobiol 14:735–751. https://doi.org/10.1007/s10237-014-0633-1

    Article  PubMed  Google Scholar 

  10. Rudolph AM, Heymann MA (1970) Circulatory changes during growth in the fetal lamb. Circ Res 26:289–299. https://doi.org/10.1161/01.res.26.3.289

    Article  CAS  PubMed  Google Scholar 

  11. Fouron JC (2003) The unrecognized physiological and clinical significance of the fetal aortic isthmus. Ultrasound Obstet Gynecol 22:441–447. https://doi.org/10.1002/uog.911

    Article  PubMed  Google Scholar 

  12. Kowalski WJ, Pekkan K, Tinney JP, Keller BB (2014) Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 5:408. https://doi.org/10.3389/fphys.2014.00408

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kelly RG (2012) The second heart field. Curr Top Dev Biol 100:33–65. https://doi.org/10.1016/B978-0-12-387786-4.00002-6

    Article  CAS  PubMed  Google Scholar 

  14. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616. https://doi.org/10.1242/dev.127.8.1607

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Dur O, Patrick MJ, Tinney JP, Tobita K, Keller BB, Pekkan K (2009) Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng 37:1069–1081. https://doi.org/10.1007/s10439-009-9682-5

    Article  PubMed  Google Scholar 

  16. Lindsey SE, Butcher JT, Yalcin HC (2014) Mechanical regulation of cardiac development. Front Physiol 5:318. https://doi.org/10.3389/fphys.2014.00318

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Mey JG, Schiffers PM, Hilgers RH, Sanders MM (2005) Toward functional genomics of flow-induced outward remodeling of resistance arteries. Am J Physiol Heart Circ Physiol 288:H1022–1027. https://doi.org/10.1152/ajpheart.00800.2004

    Article  CAS  PubMed  Google Scholar 

  18. Heymann MA, Rudolph AM (1972) Effects of congenital heart disease on fetal and neonatal circulations. Prog Cardiovasc Dis 15:115–143. https://doi.org/10.1016/0033-0620(72)90015-1

    Article  CAS  PubMed  Google Scholar 

  19. Yokoyama U, Ichikawa Y, Minamisawa S, Ishikawa Y (2017) Pathology and molecular mechanisms of coarctation of the aorta and its association with the ductus arteriosus. J Physiol Sci 67:259–270. https://doi.org/10.1007/s12576-016-0512-x

    Article  CAS  PubMed  Google Scholar 

  20. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82:221–231. https://doi.org/10.1161/01.res.82.2.221

    Article  CAS  PubMed  Google Scholar 

  21. Bergwerff M, DeRuiter MC, Hall S, Poelmann RE, Gittenberger-de Groot AC (1999) Unique vascular morphology of the fourth aortic arches: possible implications for pathogenesis of type-B aortic arch interruption and anomalous right subclavian artery. Cardiovasc Res 44:185–196. https://doi.org/10.1016/s0008-6363(99)00186-8

    Article  CAS  PubMed  Google Scholar 

  22. Friedman AH, Fahey JT (1993) The transition from fetal to neonatal circulation: normal responses and implications for infants with heart disease. Semin Perinatol 17:106–121

    CAS  PubMed  Google Scholar 

  23. Kiserud T, Acharya G (2004) The fetal circulation. Prenat Diagn 24:1049–1059. https://doi.org/10.1002/pd.1062

    Article  PubMed  Google Scholar 

  24. Donofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW, Cetta F, Falkensammer CB, Huhta JC, Kleinman CS (2003) Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol 24:436–443. https://doi.org/10.1007/s00246-002-0404-0

    Article  CAS  PubMed  Google Scholar 

  25. Giussani DA (2016) The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol 594:1215–1230. https://doi.org/10.1113/JP271099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giussani DA, Davidge ST (2013) Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis 4:328–337. https://doi.org/10.1017/S204017441300010X

    Article  CAS  PubMed  Google Scholar 

  27. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120:817–824. https://doi.org/10.1016/0002-9378(74)90587-0

    Article  CAS  PubMed  Google Scholar 

  28. Modena A, Horan C, Visintine J, Chanthasenanont A, Wood D, Weiner S (2006) Fetuses with congenital heart disease demonstrate signs of decreased cerebral impedance. Am J Obstet Gynecol 195:706–710. https://doi.org/10.1016/j.ajog.2006.05.045

    Article  PubMed  Google Scholar 

  29. Kaltman JR, Di H, Tian Z, Rychik J (2005) Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 25:32–36. https://doi.org/10.1002/uog.1785

    Article  CAS  PubMed  Google Scholar 

  30. Arduini M, Rosati P, Caforio L, Guariglia L, Clerici G, Di Renzo GC, Scambia G (2011) Cerebral blood flow autoregulation and congenital heart disease: possible causes of abnormal prenatal neurologic development. J Matern Fetal Neonatal Med 24:1208–1211. https://doi.org/10.3109/14767058.2010.547961

    Article  PubMed  Google Scholar 

  31. Blanco P (2020) Rationale for using the velocity-time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J 12:21. https://doi.org/10.1186/s13089-020-00170-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Kimberley Eissmann for her editing of the manuscript text.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

TT conceptualized the study design. DV created an initial database of the study cohort. All authors participated in data collection. LH, AMB, and TT analyzed the collected data, and LH and TT summarized the data and created the Tables and Figures. LH wrote an original draft, which was repeatedly edited by TT and AMB. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Takeshi Tsuda.

Ethics declarations

Competing Interests

Authors have no financial or non-financial interests that are directly or indirectly related the work submitted for the publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, L., Vari, D., Bhat, A.M. et al. Adaptive Growth of the Ductus Arteriosus and Aortic Isthmus in Various Ductus-Dependent Complex Congenital Heart Diseases. Pediatr Cardiol (2023). https://doi.org/10.1007/s00246-023-03236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00246-023-03236-4

Keywords

Navigation