Skip to main content

Advertisement

Log in

Genetic Contribution to Congenital Heart Disease (CHD)

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Congenital heart defects (CHD) are the most common congenital problems in neonates. The basis for CHD is multifactorial, involving genetic and environmental components. The elucidation of genetic components remains difficult because it is a genetically heterogeneous disease. Currently, the major identified genetic causes include chromosomal abnormalities, large subchromosomal deletions/duplications, and point mutations. However, much more remains to be unraveled. An important insight from the research on the genetics of CHD is that any change at the genetic level that alters the dosage of genes required in any process during heart development results in a developmental defect. The use of conventional gene identification (linkage analysis and direct targeted sequencing) methods followed by the rapid advancements in high-throughput technologies (copy number variant platforms, SNP arrays, and next-generation sequencing) has identified an extensive list of genetic causes. However, the most common presentation of CHD is in the form of sporadic cases. Therefore, it is important to identify their underlying genetic cause. In this review, we revisit the causal genetic factors of CHD and discuss the clinical implications of research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900

    Article  PubMed  Google Scholar 

  2. Pate N, Jawed S, Nigar N, Junaid F, Wadood AA, Abdullah F (2016) Frequency and pattern of congenital heart defects in a tertiary care cardiac hospital of Karachi. Pak J Med Sci. 32(1):79

    PubMed  PubMed Central  Google Scholar 

  3. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control: World Health Organization; 2011.

  4. Hersh JH, Angle B, Fox TL, Barth RF, Bendon RW, Gowans G (2002) Developmental field defects: coming together of associations and sequences during blastogenesis. Am J Med Genet Part A. 110(4):320–323

    Article  Google Scholar 

  5. Franklin RC, Jacobs JP, Tchervenkov CI, Béland MJ (2002) Bidirectional crossmap of the Short Lists of the European Paediatric Cardiac Code and the International Congenital Heart Surgery Nomenclature and Database Project. Cardiol Young 12(S2):18–22

    Article  Google Scholar 

  6. American Heart Association. 2017.

  7. Gilboa SM, Devine OJ, Kucik JE, Oster ME, Riehle-Colarusso T, Nembhard WN et al (2016) Congenital heart defects in the United States. Circulation 134(2):101–109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jacobson B. Circulatory Changes at Birth. Embryo Project Encyclopedia. 2012.

  9. Poglavlja O. Robbins and Cotran Pathologic Basis of Disease 8th Edition.

  10. Maillet M, Van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shahzad M, Waqar T, Waheed KAI, Gul R, Fatima ST (2017) Pulse oximetry as a screening tool for critical congenital heart defects in newborns. JPMA J Pak Med Ass. 67(8):1220

    Google Scholar 

  12. Fahed AC, Gelb BD, Seidman J, Seidman CE (2013) Genetics of Congenital Heart Disease. Circ Res. 112(4):707–720

    Article  CAS  PubMed  Google Scholar 

  13. Blalock A, Taussig HB (1945) The surgical treatment of malformations of the heart: in which there is pulmonary stenosis or pulmonary atresia. J Am Med Assoc 128(3):189–202

    Article  Google Scholar 

  14. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014:CIRCULATIONAHA. 113.008396.

  15. Kopf PG, Walker MK (2009) Overview of developmental heart defects by dioxins, PCBs, and pesticides. Journal of Environmental Science and Health, Part C 27(4):276–285

    Article  CAS  Google Scholar 

  16. Zhu H, Kartiko S, Finnell R (2009) Importance of gene–environment interactions in the etiology of selected birth defects. Clin Genet. 75(5):409–423

    Article  CAS  PubMed  Google Scholar 

  17. Fahed A, Gelb B, Seidman J, Seidman C. Genetics of congenital heart disease: the glass half empty (vol 112, pg 707, 2013). Circulation research. 2013;112(12):E182-E.

    Article  CAS  PubMed  Google Scholar 

  18. van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al (2011) Birth prevalence of congenital heart disease worldwide. J Am Coll Cardiol 58(21):2241–2247

    Article  PubMed  Google Scholar 

  19. Nora JJ, Dodd PF, McNamara DG, Hattwick MA, Leachman RD, Cooley DA (1969) Risk to offspring of parents with congenital heart defects. JAMA 209(13):2052–2053

    Article  CAS  PubMed  Google Scholar 

  20. Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M (2009) Recurrence of congenital heart defects in families. Circulation 120(4):295–301

    Article  PubMed  Google Scholar 

  21. Zaidi S, Brueckner M (2017) Genetics and genomics of congenital heart disease. Circ Res. 120(6):923–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shieh JT, Bittles AH, Hudgins L (2012) Consanguinity and the risk of congenital heart disease. Am J Med Genet Part A. 158(5):1236–1241

    Article  Google Scholar 

  23. Goenezen S, Rennie MY, Rugonyi S (2012) Biomechanics of early cardiac development. Biomech Model Mechanobiol 11(8):1187–1204

    Article  PubMed  PubMed Central  Google Scholar 

  24. Basson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA et al (1994) The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med. 330(13):885–891

    Article  CAS  PubMed  Google Scholar 

  25. McGregor TL, Misri A, Bartlett J, Orabona G, Friedman RD, Sexton D et al (2010) Consanguinity mapping of congenital heart disease in a South Indian population. PLoS ONE 5(4):e10286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wooten EC, Iyer LK, Montefusco MC, Hedgepeth AK, Payne DD, Kapur NK et al (2010) Application of gene network analysis techniques identifies AXIN1/PDIA2 and endoglin haplotypes associated with bicuspid aortic valve. PLoS ONE 5(1):e8830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Keavney B, Mamasoula C, Hall D, Topf A, Griffin H, Rahman T, et al. A Common Variant in the PTPN11 Gene Contributes to the Risk of Tetralogy of Fallot. Am Heart Assoc; 2011.

  28. Hartman RJ, Rasmussen SA, Botto LD, Riehle-Colarusso T, Martin CL, Cragan JD et al (2011) The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 32(8):1147–1157

    Article  PubMed  Google Scholar 

  29. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet. 5(10):725–738

    Article  CAS  PubMed  Google Scholar 

  30. Bondy CA (2009) Turner syndrome 2008. Hormone Research in Paediatrics. 71(Suppl. 1):52–56

    Article  CAS  Google Scholar 

  31. Pont SJ, Robbins JM, Bird T, Gibson JB, Cleves MA, Tilford JM et al (2006) Congenital malformations among liveborn infants with trisomies 18 and 13. Am J Med Genet Part A. 140(16):1749–1756

    Article  PubMed  Google Scholar 

  32. Wimalasundera R, Gardiner H (2004) Congenital heart disease and aneuploidy. Prenat Diagn. 24(13):1116–1122

    Article  CAS  PubMed  Google Scholar 

  33. Grossman TR, Gamliel A, Wessells RJ, Taghli-Lamallem O, Jepsen K, Ocorr K et al (2011) Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 7(11):e1002344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carvalho CM, Lupski JR (2016) Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 17(4):224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Glessner J, Bick AG, Ito K, Homsy J, Rodriguez-Murillo L, Fromer M, et al. Increased frequency of de novo copy number variations in congenital heart disease by integrative analysis of SNP array and exome sequence data. Circ Res. 2014:CIRCRESAHA. 114.304458.

  36. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104(4):619–629

    Article  CAS  PubMed  Google Scholar 

  37. Pehlivan T, Pober BR, Brueckner M, Garrett S, Slaugh R, Van Rheeden R, et al. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23. 1 and congenital heart disease. Am J Med Genet Part A. 1999;83(3):201–6.

    Article  CAS  PubMed  Google Scholar 

  38. Nickerson E, Greenberg F, Keating MT, McCaskill C, Shaffer LG. Deletions of the elastin gene at 7q11. 23 occur in approximately 90% of patients with Williams syndrome. Am J Hum Genet. 1995;56(5):1156.

  39. Ye M, Coldren C, Liang X, Mattina T, Goldmuntz E, Benson DW et al (2009) Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet. 19(4):648–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ta-Shma A, Frumkin A, Rein AJ, Yaacov B, Werner M, Elpeleg O et al (2014) A human laterality disorder associated with a homozygous WDR16 deletion. Eur J Hum Genet. 23(9):1262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Andreassi MG, Della CA (2016) Genetics of bicuspid aortic valve aortopathy. Curr Opin Cardiol. 31(6):585–592

    Article  PubMed  Google Scholar 

  42. Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 91(3):489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA et al (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. The American Journal of Human Genetics. 79(1):169–173

    Article  CAS  PubMed  Google Scholar 

  44. Mori AD, Bruneau BG (2004) TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol. 19(3):211–215

    Article  PubMed  Google Scholar 

  45. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4).

    Article  CAS  PubMed  Google Scholar 

  46. Romano AA, Allanson JE, Dahlgren J, Gelb BD, Hall B, Pierpont ME et al (2010) Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126(4):746–759

    Article  PubMed  Google Scholar 

  47. Metcalfe K, Rucka AK, Smoot L, Hofstadler G, Tuzler G, McKeown P et al (2000) Elastin: mutational spectrum in supravalvular aortic stenosis. European journal of human genetics: EJHG. 8(12):955

    Article  CAS  PubMed  Google Scholar 

  48. Bauer RC, Laney AO, Smith R, Gerfen J, Morrissette JJ, Woyciechowski S et al (2010) Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat. 31(5):594–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2. 5mutations in patients with congenital heart disease. J Am coll cardiol. 2003;42(9):1650–5.

  50. Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, et al. Common arterial trunk associated with a homeodomain mutation of NKX2. 6. Hum Mol Genet. 2005;14(5):585–93.

  51. Peng T, Wang L, Zhou S-F, Li X. Mutations of the GATA4 and NKX2. 5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica. 2010;138(11–12):1231–40.

    Article  CAS  PubMed  Google Scholar 

  52. Wei D, Bao H, Zhou N, Zheng G-F, Liu X-Y, Yang Y-Q (2013) GATA5 loss-of-function mutation responsible for the congenital ventriculoseptal defect. Pediatr Cardiol. 34(3):504–511

    Article  PubMed  Google Scholar 

  53. Zheng G-F, Wei D, Zhao H, Zhou N, Yang Y-Q, Liu X-Y (2012) A novel GATA6 mutation associated with congenital ventricular septal defect. Int J Mol Med. 29(6):1065–1071

    CAS  PubMed  Google Scholar 

  54. Cheng Z, Wang J, Su D, Pan H, Huang G, Li X et al (2011) Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Genet 130(5):657–662

    Article  PubMed  Google Scholar 

  55. Posch MG, Gramlich M, Sunde M, Schmitt KR, Lee SH, Richter S et al (2010) A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J Med Genet. 47(4):230–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B et al (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet. 74(1):93–105

    Article  CAS  PubMed  Google Scholar 

  57. Kasahara H, Lee B, Schott J-J, Benson DW, Seidman J, Seidman CE, et al. Loss of function and inhibitory effects of human CSX/NKX2. 5 homeoprotein mutations associated with congenital heart disease. J Clin Invest. 2000;106(2):299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L et al (2011) Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. Proc Natl Acad Sci 108(10):4006–4011

    Article  CAS  PubMed  Google Scholar 

  59. Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J et al (2007) A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129(7):1365–1376

    Article  CAS  PubMed  Google Scholar 

  60. Burdine RD, Schier AF (2000) Conserved and divergent mechanisms in left–right axis formation. Genes Dev. 14(7):763–776

    CAS  PubMed  Google Scholar 

  61. Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD et al (2008) Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 18(5):861–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kosaki K, Kosaki R, Bassi M, Lewin M, Belmont J, Schauer G et al (1999) Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. The American Journal of Human Genetics. 64(3):712–721

    Article  CAS  PubMed  Google Scholar 

  63. Ching Y-H, Ghosh TK, Cross SJ, Packham EA, Honeyman L, Loughna S et al (2005) Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet. 37(4):423–428

    Article  CAS  PubMed  Google Scholar 

  64. Postma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJ et al (2011) Mutations in the Sarcomere Gene MYH7 in Ebstein AnomalyClinical Perspective. Cir Cradiovas Genet. 4(1):43–50

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Prof. Philippa Talmud, Center for Cardiovascular Genetics, Institue of Cardiovascular Sciences, University College London, UK is acknowledged for the critical revision of the review for English, grammar, and punctuation.

Funding

We received no specific funding for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NA Shabana.

Ethics declarations

Conflict of interest:

All authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabana, N., Shahid, S.U. & Irfan, U. Genetic Contribution to Congenital Heart Disease (CHD). Pediatr Cardiol 41, 12–23 (2020). https://doi.org/10.1007/s00246-019-02271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02271-4

Keywords

Navigation