Skip to main content

Advertisement

Log in

What is Left Ventricular Strain in Healthy Neonates? A Systematic Review and Meta-analysis

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Reference values for left ventricular systolic strain in healthy neonates are necessary for clinical application of strain. The objectives of this systematic review were to identify echocardiographic studies that presented left ventricular strain values in healthy neonates, perform a meta-analysis for speckle tracking-derived global longitudinal strain, and identify areas that require further investigation. A structured search was applied to MEDLINE, Embase, and Cochrane Central Register of Clinical Trials in search of echocardiographic studies that presented left ventricular strain in healthy neonates. 244 studies were identified, of which 16 studies including speckle tracking and tissue Doppler strain in the longitudinal, radial, and circumferential directions passed the screening process. Out of these 16 studies, a meta-analysis was performed on the 10 studies that reported speckle tracking global longitudinal strain. Mean speckle tracking-derived global longitudinal strain was 21.0% (95% Confidence Interval 19.6–22.5%, strain given as positive values). When the studies were divided into subgroups, mean speckle tracking global longitudinal strain from the four-chamber view was 19.5% (95% Confidence Interval 18.0–21.0%) and that derived from all three apical views was 22.5% (95% CI 20.6–24.7%), indicating that global longitudinal strain from the four-chamber view is slightly lower than global longitudinal strain from all three apical views. Neonatal strain values were close to strain values in older subjects found in previous meta-analyses. Further studies are recommended that examine strain rate, segmental strain values, strain derived from short axis views, and strain in the first few hours after birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. El-Khuffash A, Schubert U, Levy PT, Nestaas E, de Boode WP, de Boode WP, Austin T, Bohlin K, Bravo MC, Breatnach CR, Breindahl M, Dempsey E, El-Khuffash A, Groves AM, Gupta S, Horsberg Eriksen B, Levy PT, McNamara PJ, Molnar Z, Nestaas E, Rogerson SR, Roehr CC, Savoia M, Schubert U, Schwarz CE, Sehgal A, Singh Y, Slieker MG, Tissot C, van der Lee R, van Laere D, van Overmeire B, van Wyk L (2018) Deformation imaging and rotational mechanics in neonates: a guide to image acquisition, measurement, interpretation, and reference values. Pediatr Cardiol 84(1):30–45. https://doi.org/10.1038/s41390-018-0080-2

    Article  Google Scholar 

  2. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  3. Breatnach CR, Levy PT, James AT, Franklin O, El-Khuffash A (2016) Novel echocardiography methods in the functional assessment of the newborn heart. Neonatology 110(4):248–260. https://doi.org/10.1159/000445779

    Article  PubMed  Google Scholar 

  4. Nestaas E, Stoylen A, Brunvand L, Fugelseth D (2011) Longitudinal strain and strain rate by tissue Doppler are more sensitive indices than fractional shortening for assessing the reduced myocardial function in asphyxiated neonates. Cardiol Young 21(1):1–7. https://doi.org/10.1017/S1047951109991314

    Article  PubMed  Google Scholar 

  5. Al-Biltagi M, Tolba OA, Rowisha MA, Mahfouz Ael S, Elewa MA (2015) Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes. Pediatr Cardiol 36(2):445–453. https://doi.org/10.1007/s00246-014-1033-0

    Article  PubMed  Google Scholar 

  6. Hirose A, Khoo NS, Aziz K, Al-Rajaa N, van den Boom J, Savard W, Brooks P, Hornberger LK (2015) Evolution of left ventricular function in the preterm infant. J Am Soc Echocardiogr 28(3):302–308. https://doi.org/10.1016/j.echo.2014.10.017

    Article  PubMed  Google Scholar 

  7. Tham EB, Smallhorn JF, Kaneko S, Valiani S, Myers KA, Colen TM, Kutty S, Khoo NS (2014) Insights into the evolution of myocardial dysfunction in the functionally single right ventricle between staged palliations using speckle-tracking echocardiography. J Am Soc Echocardiogr 27(3):314–322. https://doi.org/10.1016/j.echo.2013.11.012

    Article  PubMed  Google Scholar 

  8. Sehgal A, Doctor T, Menahem S (2014) Cyclooxygenase inhibitors in preterm infants with patent ductus arteriosus: effects on cardiac and vascular indices. Pediatr Cardiol 35(8):1429–1436. https://doi.org/10.1007/s00246-014-0947-x

    Article  PubMed  Google Scholar 

  9. Nestaas E, Skranes JH, Stoylen A, Brunvand L, Fugelseth D (2014) The myocardial function during and after whole-body therapeutic hypothermia for hypoxic-ischemic encephalopathy, a cohort study. Early Hum Dev 90(5):247–252. https://doi.org/10.1016/j.earlhumdev.2014.01.014

    Article  PubMed  Google Scholar 

  10. Akao M, Katsube Y, Kamisago M, Watanabe M, Abe M, Fukazawa R, Ogawa S, Itoh Y (2013) Developmental changes in left and right ventricular function evaluated with color tissue Doppler imaging and strain echocardiography. J Nippon Med Sch 80(4):260–267

    Article  Google Scholar 

  11. Jain A, Kuipers BCW, Mohamed A, Connelly KA, McNamara PJ, Jankov RP, Mertens L (2017) Left ventricular function in healthy term neonates during the transitional period. J Pediatr 182:197–203.e192. https://doi.org/10.1016/j.jpeds.2016.11.003

    Article  PubMed  Google Scholar 

  12. Sehgal A, Wong F, Menahem S (2013) Speckle tracking derived strain in infants with severe perinatal asphyxia: a comparative case control study. Cardiovasc 11:34. https://doi.org/10.1186/1476-7120-11-34

    Article  Google Scholar 

  13. Sehgal A, Doctor T, Menahem S (2014) Cardiac function and arterial indices in infants born small for gestational age: analysis by speckle tracking. Acta Paediatr 103(2):e49–e54. https://doi.org/10.1111/apa.12465

    Article  PubMed  Google Scholar 

  14. Cantinotti M, Kutty S, Franchi E, Paterni M, Scalese M, Iervasi G, Koestenberger M (2017) Pediatric echocardiographic nomograms: What has been done and what still needs to be done. Trends Cardiovasc Med 27(5):336–349. https://doi.org/10.1016/j.tcm.2017.01.006

    Article  PubMed  Google Scholar 

  15. Forsey J, Friedberg MK, Mertens L (2013) Speckle tracking echocardiography in pediatric and congenital heart disease. Echocardiography 30(4):447–459. https://doi.org/10.1111/echo.12131

    Article  PubMed  Google Scholar 

  16. Kahr PC, Kahr MK, Dabral H, Agarwal R, Kothari SS, Saxena A, Ramakrishnan S (2016) Changes in myocardial contractility and electromechanical interval during the first month of life in healthy neonates. Pediatr Cardiol 37(2):409–418. https://doi.org/10.1007/s00246-015-1292-4

    Article  PubMed  Google Scholar 

  17. Nestaas E, Støylen A, Fugelseth D (2012) Myocardial performance assessment in neonates by one-segment strain and strain rate analysis by tissue Doppler—a quality improvement cohort study. BMJ Open 2(4):e001636. https://doi.org/10.1136/bmjopen-2012-001636

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khan U, Hjertaas JJ, Greve G, Matre K (2016) Optimal acquisition settings for speckle tracking echocardiography-derived strains in infants: an in vitro study. Ultrasound Med Biol 42(7):1660–1670. https://doi.org/10.1016/j.ultrasmedbio.2016.02.015

    Article  PubMed  Google Scholar 

  19. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26(2):185–191. https://doi.org/10.1016/j.echo.2012.10.008

    Article  PubMed  Google Scholar 

  20. Levy PT, Machefsky A, Sanchez AA, Patel MD, Rogal S, Fowler S, Yaeger L, Hardi A, Holland MR, Hamvas A, Singh GK (2016) Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 29(3):209–225.e206. https://doi.org/10.1016/j.echo.2015.11.016

    Article  PubMed  Google Scholar 

  21. Jashari H, Rydberg A, Ibrahimi P, Bajraktari G, Kryeziu L, Jashari F, Henein MY (2015) Normal ranges of left ventricular strain in children: a meta-analysis. Cardiovasc Ultrasound 13:37. https://doi.org/10.1186/s12947-015-0029-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bax L, Yu L-M, Ikeda N, Moons KGM (2007) A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Med Res Methodol 7:40. https://doi.org/10.1186/1471-2288-7-40

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee YH (2018) An overview of meta-analysis for clinicians. Korean J Intern Med 33(2):277–283. https://doi.org/10.3904/kjim.2016.195

    Article  PubMed  Google Scholar 

  25. Bowden J, Tierney JF, Copas AJ, Burdett S (2011) Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol 11:41. https://doi.org/10.1186/1471-2288-11-41

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nestaas E, Stoylen A, Brunvand L, Fugelseth D (2009) Tissue Doppler derived longitudinal strain and strain rate during the first 3 days of life in healthy term neonates. Pediatr Cardiol 65(3):357–362. https://doi.org/10.1203/PDR.0b013e318193f149

    Article  Google Scholar 

  27. Friede T, Röver C, Wandel S, Neuenschwander B (2017) Meta-analysis of few small studies in orphan diseases. Res Synth Methods 8(1):79–91. https://doi.org/10.1002/jrsm.1217

    Article  PubMed  Google Scholar 

  28. Marcus KA, Mavinkurve-Groothuis AM, Barends M, van Dijk A, Feuth T, de Korte C, Kapusta L (2011) Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J Am Soc Echocardiogr 24(6):625–636. https://doi.org/10.1016/j.echo.2011.01.021

    Article  PubMed  Google Scholar 

  29. Zhang L, Gao J, Xie M, Yin P, Liu W, Li Y, Klas B, Sun J, Balluz R, Ge S (2013) Left ventricular three-dimensional global systolic strain by real-time three-dimensional speckle-tracking in children: feasibility, reproducibility, maturational changes, and normal ranges. J Am Soc Echocardiogr 26(8):853–859. https://doi.org/10.1016/j.echo.2013.05.002

    Article  PubMed  Google Scholar 

  30. Lorch SM, Ludomirsky A, Singh GK (2008) Maturational and growth-related changes in left ventricular longitudinal strain and strain rate measured by two-dimensional speckle tracking echocardiography in healthy pediatric population. J Am Soc Echocardiogr 21(11):1207–1215. https://doi.org/10.1016/j.echo.2008.08.011

    Article  PubMed  Google Scholar 

  31. Rosner A, Bijnens B, Hansen M, How OJ, Aarsaether E, Muller S, Sutherland GR, Myrmel T (2009) Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr 10(2):271–277. https://doi.org/10.1093/ejechocard/jen230

    Article  PubMed  Google Scholar 

  32. Riley RD, Higgins JPT, Deeks JJ (2011) Interpretation of random effects meta-analyses. BMJ 342:d549. https://doi.org/10.1136/bmj.d549

    Article  PubMed  Google Scholar 

  33. Davey J, Turner RM, Clarke MJ, Higgins JPT (2011) Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol 11(1):160. https://doi.org/10.1186/1471-2288-11-160

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amzulescu MS, Langet H, Saloux E, Manrique A, Boileau L, Slimani A, Allain P, Roy C, Meester Cd, Pasquet A, Craene MD, Vancraeynest D, Pouleur A-C, Vanoverschelde J-LJ, Gerber BL (2017) Head-to-head comparison of global and regional two-dimensional speckle tracking strain versus cardiac magnetic resonance tagging in a multicenter validation study. Circ Cardiovasc Imaging 10(11):e006530. https://doi.org/10.1161/CIRCIMAGING.117.006530

    Article  PubMed  Google Scholar 

  35. Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, Voigt JU (2018) Intervendor differences in the accuracy of detecting regional functional abnormalities: a report from the EACVI-ASE strain standardization task force. JACC Cardiovasc Imaging 11(1):25–34. https://doi.org/10.1016/j.jcmg.2017.02.014

    Article  PubMed  Google Scholar 

  36. Shiino K, Yamada A, Ischenko M, Khandheria BK, Hudaverdi M, Speranza V, Harten M, Benjamin A, Hamilton-Craig CR, Platts DG, Burstow DJ, Scalia GM, Chan J (2017) Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur Heart J Cardiovasc Imaging 18(6):707–716. https://doi.org/10.1093/ehjci/jew120

    Article  PubMed  Google Scholar 

  37. Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69(8):1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012

    Article  PubMed  Google Scholar 

  38. Evans NJ, Archer LN (1990) Postnatal circulatory adaptation in healthy term and preterm neonates. Arch Dis Childhood 65(1 Spec No):24–26.

    Article  CAS  Google Scholar 

  39. Elkiran O, Karakurt C, Kocak G, Karadag A (2014) Tissue Doppler, strain, and strain rate measurements assessed by two-dimensional speckle-tracking echocardiography in healthy newborns and infants. Cardiol Young 24(2):201–211. https://doi.org/10.1017/S1047951112002284

    Article  PubMed  Google Scholar 

  40. Jashari H, Lannering K, Ibrahimi P, Djekic D, Mellander M, Rydberg A, Henein MY (2016) Persistent reduced myocardial deformation in neonates after CoA repair. Int J Cardiol 221:886–891. https://doi.org/10.1016/j.ijcard.2016.07.114

    Article  PubMed  Google Scholar 

  41. Czernik C, Rhode S, Helfer S, Schmalisch G, Buhrer C, Schmitz L (2014) Development of left ventricular longitudinal speckle tracking echocardiography in very low birth weight infants with and without bronchopulmonary dysplasia during the neonatal period. PLoS ONE 9(9):e106504. https://doi.org/10.1371/journal.pone.0106504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Waal K, Lakkundi A, Othman F (2014) Speckle tracking echocardiography in very preterm infants: feasibility and reference values. Early Hum Dev 90(6):275–279. https://doi.org/10.1016/j.earlhumdev.2014.03.006

    Article  PubMed  Google Scholar 

  43. Levy PT, El-Khuffash A, Patel MD, Breatnach CR, James AT, Sanchez AA, Abuchabe C, Rogal SR, Holland MR, McNamara PJ, Jain A, Franklin O, Mertens L, Hamvas A, Singh GK (2017) Maturational patterns of systolic ventricular deformation mechanics by two-dimensional speckle-tracking echocardiography in preterm infants over the first year of age. J Am Soc Echocardiogr 30(7):685–698.e681. https://doi.org/10.1016/j.echo.2017.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2016) Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 37(15):1196–1207. https://doi.org/10.1093/eurheartj/ehv529

    Article  PubMed  Google Scholar 

  45. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, d'Hooge J, Aurigemma GP, Thomas JD, Badano LP (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 28(2):183–193. https://doi.org/10.1016/j.echo.2014.11.003

    Article  PubMed  Google Scholar 

  46. Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, Caballero L, Akhaladze N, Athanassopoulos GD, Barone D, Baroni M, Cardim N, Hagendorff A, Hristova K, Lopez T, de la Morena G, Popescu BA, Moonen M, Penicka M, Ozyigit T, Rodrigo Carbonero JD, van de Veire N, von Bardeleben RS, Vinereanu D, Zamorano JL, Go YY, Rosca M, Calin A, Magne J, Cosyns B, Marchetta S, Donal E, Habib G, Galderisi M, Badano LP, Lang RM, Lancellotti P (2017) Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18(8):833–840. https://doi.org/10.1093/ehjci/jex140

    Article  PubMed  Google Scholar 

  47. Farsalinos KE, Daraban AM, Unlu S, Thomas JD, Badano LP, Voigt JU (2015) Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr 28(10):1171–1181.e1172. https://doi.org/10.1016/j.echo.2015.06.011

    Article  PubMed  Google Scholar 

  48. de Waal K, Phad N (2017) A comparison between Philips and Tomtec for left ventricular deformation and volume measurements in neonatal intensive care patients. Echocardiography 35(3):375–379. https://doi.org/10.1111/echo.13788

    Article  PubMed  Google Scholar 

  49. Altit G, Bhombal S, Van Meurs K, Tacy TA (2018) Diminished cardiac performance and left ventricular dimensions in neonates with congenital diaphragmatic hernia. Pediatr Cardiol 39(5):993–1000. https://doi.org/10.1007/s00246-018-1850-7

    Article  PubMed  Google Scholar 

  50. Nyrnes SA, Garnæs KK, Salvesen Ø, Timilsina AS, Moholdt T, Ingul CB (2018) Cardiac function in newborns of obese women and the effect of exercise during pregnancy. A randomized controlled trial. PLoS ONE 13(6):e0197334. https://doi.org/10.1371/journal.pone.0197334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Breatnach CR, Monteith C, McSweeney L, Tully EC, Malone FD, Kent E, Doherty A, Franklin O, El-Khuffash A (2017) The impact of maternal gestational hypertension and the use of anti-hypertensives on neonatal myocardial performance. Neonatology 113(1):21–26. https://doi.org/10.1159/000480396

    Article  PubMed  Google Scholar 

  52. Akazawa Y, Hachiya A, Yamazaki S, Kawasaki Y, Nakamura C, Takeuchi Y, Kusakari M, Miyosawa Y, Kamiya M, Motoki N, Koike K, Nakamura T (2016) Cardiovascular remodeling and dysfunction across a range of growth restriction severity in small for gestational age infants—implications for fetal programming. Circ J 80(10):2212–2220. https://doi.org/10.1253/circj.CJ-16-0352

    Article  PubMed  Google Scholar 

  53. Klitsie LM, Roest AA, Haak MC, Blom NA, Ten Harkel AD (2013) Longitudinal follow-up of ventricular performance in healthy neonates. Early Hum Dev 89(12):993–997. https://doi.org/10.1016/j.earlhumdev.2013.08.019

    Article  PubMed  Google Scholar 

  54. Schubert U, Muller M, Norman M, Abdul-Khaliq H (2013) Transition from fetal to neonatal life: changes in cardiac function assessed by speckle-tracking echocardiography. Early Hum Dev 89(10):803–808. https://doi.org/10.1016/j.earlhumdev.2013.06.009

    Article  PubMed  Google Scholar 

  55. Pena JL, da Silva MG, Faria SC, Salemi VM, Mady C, Baltabaeva A, Sutherland GR (2009) Quantification of regional left and right ventricular deformation indices in healthy neonates by using strain rate and strain imaging. J Am Soc Echocardiogr 22(4):369–375. https://doi.org/10.1016/j.echo.2008.12.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Regina Küfner Lein, Librarian at the University Library of Bergen, for her invaluable contribution in identifying the appropriate databases and developing a search strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umael Khan.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, U., Omdal, T.R., Matre, K. et al. What is Left Ventricular Strain in Healthy Neonates? A Systematic Review and Meta-analysis. Pediatr Cardiol 41, 1–11 (2020). https://doi.org/10.1007/s00246-019-02219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02219-8

Keywords

Navigation