Skip to main content
Log in

Blood Versus Crystalloid Cardioplegia in Pediatric Cardiac Surgery: A Systematic Review and Meta-analysis

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The benefit of blood cardioplegia (BCP) compared to crystalloid cardioplegia (CCP) is still debatable. Our aim was to systematically review and synthesize all available evidence on the use of BCP and CCP to assess if any modality provides superior outcomes in pediatric cardiac surgery. A systematic literature search of the PubMed and Cochrane databases was performed with respect to the PRISMA statement (end-of-search date: January 30th, 2017). We extracted data on study design, demographics, cardioplegia regimens, and perioperative outcomes as well as relevant biochemical markers, namely cardiac troponin I (cTnI), lactate, and ATP levels at baseline, after reperfusion and postoperatively at 1, 4, 12, and 24 h as applicable. Data were appropriately pooled using random and mixed effects models. Our systematic review includes 56 studies reporting on a total of 7711 pediatric patients. A meta-analysis of the 10 eligible studies directly comparing BCP (n = 416) to CCP (n = 281) was also performed. There was no significant difference between the two groups with regard to cTnI and Lac at any measured time point, ATP levels after reperfusion, length of intensive care unit stay (WMD: −0.08, 95% CI −1.52 to 1.36), length of hospital stay (WMD: 0.13, 95% CI −0.85 to 1.12), and 30-day mortality (OR 1.11, 95% CI 0.43–2.88). Only cTnI levels at 4 h postoperatively were significantly lower with BCP (WMD: −1.62, 95% CI −2.07 to −1.18). Based on the available data, neither cardioplegia modality seems to be superior in terms of clinical outcomes, ischemia severity, and overall functional recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kotani Y, Tweddell J, Gruber P, Pizarro C, Austin EH 3rd, Woods RK, Gruenwald C, Caldarone CA (2013) Current cardioplegia practice in pediatric cardiac surgery: a North American multiinstitutional survey. Ann Thorac Surg 96(3):923–929. doi:10.1016/j.athoracsur.2013.05.052

    Article  PubMed  Google Scholar 

  2. Zakkar M, Guida G, Suleiman MS, Angelini GD (2015) Cardiopulmonary bypass and oxidative stress. Oxid Med Cell Long 2015:189863. doi:10.1155/2015/189863

    Google Scholar 

  3. Kay H, Laks H, Hammond GL, Geha AS (1980) New methods of myocardial protection for cardiac surgery. Conn Med 44(6):357–361

    CAS  PubMed  Google Scholar 

  4. Kane AE, Howlett SE (2016) Novel cardioprotection strategies for the aged heart: evidence from pre-clinical studies. Clin Exp Pharmacol Physiol 43(12):1251–1260. doi:10.1111/1440-1681.12668

    Article  CAS  PubMed  Google Scholar 

  5. Bull C, Cooper J, Stark J (1984) Cardioplegic protection of the child’s heart. J Thorac Cardiovasc Surg 88(2):287–293

    CAS  PubMed  Google Scholar 

  6. Chaturvedi RR, Lincoln C, Gothard JW, Scallan MH, White PA, Redington AN, Shore DF (1998) Left ventricular dysfunction after open repair of simple congenital heart defects in infants and children: quantitation with the use of a conductance catheter immediately after bypass. J Thorac Cardiovasc Surg 115(1):77–83

    Article  CAS  PubMed  Google Scholar 

  7. Imura H, Caputo M, Parry A, Pawade A, Angelini GD, Suleiman MS (2001) Age-dependent and hypoxia-related differences in myocardial protection during pediatric open heart surgery. Circulation 103(11):1551–1556

    Article  CAS  PubMed  Google Scholar 

  8. Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79(3):635–659

    CAS  PubMed  Google Scholar 

  9. Calza G, Lerzo F, Perfumo F, Borini I, Panizzon G, Moretti R, Grasso P, Virgone A, Zannini L (2002) Clinical evaluation of oxidative stress and myocardial reperfusion injury in pediatric cardiac surgery. J Cardiovasc Surg 43(4):441–447

    CAS  Google Scholar 

  10. Matte GS, del Nido PJ (2012) History and use of del Nido cardioplegia solution at Boston Children’s Hospital. J Extra-Corpor Technol 44(3):98–103

    PubMed  PubMed Central  Google Scholar 

  11. Kempsford RD, Hearse DJ (1989) Protection of the immature myocardium during global ischemia. A comparison of four clinical cardioplegic solutions in the rabbit heart. J Thorac Cardiovasc Surg 97(6):856–863

    CAS  PubMed  Google Scholar 

  12. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. doi:10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hozo S, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5(1):1–10. doi:10.1186/1471-2288-5-13

    Article  Google Scholar 

  14. Higgins JPT, Green S (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration

  15. Oremus M, Wolfson C, Perrault A, Demers L, Momoli F, Moride Y (2001) Interrater reliability of the modified Jadad quality scale for systematic reviews of Alzheimer’s disease drug trials. Dement Geriatr Cogn Disord 12(3):232–236

    Article  CAS  PubMed  Google Scholar 

  16. Wells GA SB, O’Connell D, Peterson J, Welch V, Losos M, et al The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Dept of Epidemiology and Community Medicine, University of Ottawa: Ottawa, Canada

  17. Abe M, Atsumi N, Matsushita S, Mitsui T (2001) Recovery of high-frequency QRS potentials following cardioplegic arrest in pediatric cardiac surgery. Pediatr Cardiol 22(4):315–320. doi:10.1007/s002460010236

    Article  CAS  PubMed  Google Scholar 

  18. Aburawi EH, Berg A, Pesonen E (2009) Coronary flow before and after surgical versus device closure of atrial septal defect. Int J Cardiol 135(1):14–20. doi:10.1016/j.ijcard.2008.03.046

    Article  PubMed  Google Scholar 

  19. Amark K, Berggren H, Bjork K, Ekroth A, Ekroth R, Nilsson K, Sunnegardh J (2005) Blood cardioplegia provides superior protection in infant cardiac surgery. Ann Thorac Surg 80(3):989–994. doi:10.1016/j.athoracsur.2005.03.095

    Article  PubMed  Google Scholar 

  20. Amark K, Berggren H, Bjork K, Ekroth A, Ekroth R, Nilsson K, Sunnegardh J (2006) Myocardial metabolism is better preserved after blood cardioplegia in infants. Ann Thorac Surg 82(1):172–178. doi:10.1016/j.athoracsur.2006.01.093

    Article  PubMed  Google Scholar 

  21. Backer CL, Hillman N, Dodge-Khatami A, Mavroudis C (2000) Anomalous origin of the left coronary artery from the pulmonary artery: successful surgical strategy without assist devices. Sem Thorac Cardiovasc Surg Pediatr Card Surg Ann 3:165–172

    Article  Google Scholar 

  22. Belli E, Roussin R, Ly M, Roubertie F, Le Bret E, Basaran M, Serraf A (2010) Anomalous origin of the left coronary artery from the pulmonary artery associated with severe left ventricular dysfunction: results in normothermia. Ann Thorac Surg 90(3):856–860. doi:10.1016/j.athoracsur.2010.06.002

    Article  PubMed  Google Scholar 

  23. Bojan M, Peperstraete H, Lilot M, Tourneur L, Vouhe P, Pouard P (2013) Cold histidine-tryptophan-ketoglutarate solution and repeated oxygenated warm blood cardioplegia in neonates with arterial switch operation. Ann Thorac Surg 95(4):1390–1396. doi:10.1016/j.athoracsur.2012.12.025

    Article  PubMed  Google Scholar 

  24. Breuer C, Rauh M, Zink S, Koch A, Weyand M, Dittrich S, Kohler H (2009) Serum levels of gastric-acid-stimulating factors in children undergoing open heart surgery. Intensive Care Med 35(9):1619–1622. doi:10.1007/s00134-009-1543-z

    Article  CAS  PubMed  Google Scholar 

  25. Caputo M, Modi P, Imura H, Pawade A, Parry AJ, Suleiman MS, Angelini GD (2002) Cold blood versus cold crystalloid cardioplegia for repair of ventricular septal defects in pediatric heart surgery: a randomized controlled trial. Ann Thorac Surg 74(2):530–534 (discussion 535)

    Article  PubMed  Google Scholar 

  26. Charette K, Gerrah R, Quaegebeur J, Chen J, Riley D, Mongero L, Corda R, Bacha E (2012) Single dose myocardial protection technique utilizing del Nido cardioplegia solution during congenital heart surgery procedures. Perfusion 27(2):98–103. doi:10.1177/0267659111424788

    Article  CAS  PubMed  Google Scholar 

  27. De Rita F, Marchi D, Lucchese G, Barozzi L, Dissegna R, Menon T, Faggian G, Mazzucco A, Luciani GB (2013) Comparison between D901 Lilliput 1 and Kids D100 neonatal oxygenators: toward bypass circuit miniaturization. Artif Organs 37(1):E24–28. doi:10.1111/aor.12017

    Article  PubMed  Google Scholar 

  28. Durandy Y (2007) Usefulness of low prime perfusion pediatric circuit in decreasing blood transfusion. ASAIO J 53(6):659–661. doi:10.1097/MAT.0b013e31815b0cee

    Article  PubMed  Google Scholar 

  29. Durandy Y, Hulin S (2007) Intermittent warm blood cardioplegia in the surgical treatment of congenital heart disease: clinical experience with 1400 cases. J Thorac Cardiovasc Surg 133(1):241–246. doi:10.1016/j.jtcvs.2006.10.004

    Article  PubMed  Google Scholar 

  30. Durandy YD, Hulin SH (2006) Normothermic bypass in pediatric surgery: technical aspect and clinical experience with 1400 cases. ASAIO J 52(5):539–542. doi:10.1097/01.mat.0000242597.92625.e9

    PubMed  Google Scholar 

  31. Durandy YD, Younes M, Mahut B (2008) Pediatric warm open heart surgery and prolonged cross-clamp time. Ann Thorac Surg 86(6):1941–1947. doi:10.1016/j.athoracsur.2008.08.004

    Article  PubMed  Google Scholar 

  32. Fazelifar S, Bigdelian H (2015) Effect of esmolol on myocardial protection in pediatrics congenital heart defects. Adv Biomed Res 4:246. doi:10.4103/2277-9175.170241

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gates RN, Palafox BA, Parker B (2008) Results with all blood retrograde microplegia as a myocardial protection strategy for complex neonatal arch reconstruction. ASAIO J 54(5):451–453. doi:10.1097/MAT.0b013e318184e66d

    Article  PubMed  Google Scholar 

  34. Gates RN, Parker B (2005) Technique and results for integration of the quest MPS all-blood cardioplegia delivery unit for modified ultrafiltration. ASAIO J 51(5):654–656

    Article  PubMed  Google Scholar 

  35. Giannessi D, Caselli C, Vitale RL, Crucean A, Murzi B, Del Ry S, Vanini V, Biagini A (2003) A possible cardioprotective effect of heat shock proteins during cardiac surgery in pediatric patients. Pharmacol Res 48(5):519–529

    Article  CAS  PubMed  Google Scholar 

  36. Giordano R, Arcieri L, Cantinotti M, Pak V, Poli V, Maizza A, Melo M, Assanta N, Moschetti R, Murzi B (2016) Custodiol solution and cold blood cardioplegia in arterial switch operation: retrospective analysis in a single center. Thorac Cardiovasc Surg 64(1):53–58. doi:10.1055/s-0035-1566235

    PubMed  Google Scholar 

  37. Hammel JM, Deptula JJ, Karamlou T, Wedemeyer E, Abdullah I, Duncan KF (2013) Newborn aortic arch reconstruction with descending aortic cannulation improves postoperative renal function. Ann Thorac Surg 96(5):1721–1726. doi:10.1016/j.athoracsur.2013.06.033 (discussion 1726)

    Article  PubMed  Google Scholar 

  38. Hammon JW Jr, Graham TP Jr, Boucek RJ Jr, Parrish MD, Merrill WH, Bender HW Jr (1987) Myocardial adenosine triphosphate content as a measure of metabolic and functional myocardial protection in children undergoing cardiac operation. Ann Thorac Surg 44(5):467–470

    Article  PubMed  Google Scholar 

  39. Hayashi Y, Sawa Y, Nishimura M, Ichikawa H, Kagisaki K, Ohtake S, Matsuda H (2000) Clinical evaluation of leukocyte-depleted blood cardioplegia for pediatric open heart operation. Ann Thorac Surg 69(6):1914–1919

    Article  CAS  PubMed  Google Scholar 

  40. He GW, Liu XC, Kong XR, Liu LX, Yan YQ, Chen BJ, Li ZX, Jing WB, Wang ZQ, Wang K, Zhang W, Chen TN, Wang PS, Lu WL, Zhang JL, Guo ZP, Xue LG, Zhu YX, Wang XL, Xi L (2008) The current strategy of repair of tetralogy of Fallot in children and adults. Cardiol Young 18(6):608–614. doi:10.1017/s1047951108003077

    Article  PubMed  Google Scholar 

  41. Imura H, Modi P, Pawade A, Parry AJ, Suleiman MS, Angelini GD, Caputo M (2002) Cardiac troponin I in neonates undergoing the arterial switch operation. Ann Thorac Surg 74(6):1998–2002

    Article  PubMed  Google Scholar 

  42. Ji Q, Mei Y, Wang X, Feng J, Wusha D, Cai J, Zhou Y (2011) Effect of ischemic postconditioning in correction of tetralogy of Fallot. Int Heart J 52(5):312–317

    Article  CAS  PubMed  Google Scholar 

  43. Jin ZX, Zhang SL, Wang XM, Bi SH, Xin M, Zhou JJ, Cui Q, Duan WX, Wang HB, Yi DH (2008) The myocardial protective effects of a moderate-potassium adenosine-lidocaine cardioplegia in pediatric cardiac surgery. J Thorac Cardiovasc Surg 136(6):1450–1455. doi:10.1016/j.jtcvs.2008.03.025

    Article  CAS  PubMed  Google Scholar 

  44. Keski-Nisula J, Suominen PK, Olkkola KT, Peltola K, Neuvonen PJ, Tynkkynen P, Salminen JT, Andersson S, Pesonen E (2015) Effect of timing and route of methylprednisolone administration during pediatric cardiac surgical procedures. Ann Thorac Surg 99(1):180–185. doi:10.1016/j.athoracsur.2014.08.042

    Article  PubMed  Google Scholar 

  45. Kolcz J, Pizarro C (2005) Neonatal repair of tetralogy of Fallot results in improved pulmonary artery development without increased need for reintervention. Eur J Cardiothorac Surg 28(3):394–399. doi:10.1016/j.ejcts.2005.05.014

    Article  PubMed  Google Scholar 

  46. Korun O, Ozkan M, Terzi A, Askin G, Sezgin A, Aslamaci S (2013) The comparison of the effects of Bretschneider’s histidine-tryptophan-ketoglutarate and conventional crystalloid cardioplegia on pediatric myocardium at tissue level. Artif Organs 37(1):76–81. doi:10.1111/j.1525-1594.2012.01575.x

    Article  CAS  PubMed  Google Scholar 

  47. Kozar EF, Plyushch MG, Popov AE, Kulaga OI, Movsesyan RR, Samsonova NN, Bokeriya LA (2015) Markers of myocardial damage in children of the first year of life with congenital heart disease in the early period after surgery with cardioplegic anoxia. Bull Exp Biol Med 158(4):421–424. doi:10.1007/s10517-015-2776-1

    Article  CAS  PubMed  Google Scholar 

  48. Liu J, Feng Z, Zhao J, Li B, Long C (2008) The myocardial protection of HTK cardioplegic solution on the long-term ischemic period in pediatric heart surgery. ASAIO J 54(5):470–473. doi:10.1097/MAT.0b013e318188b86c

    Article  PubMed  Google Scholar 

  49. Liu J, Ji B, Feng Z, Li C, Li B, Lang Y, Long C (2007) Application of modified perfusion technique on one stage repair of interrupted aortic arch in infants: a case series and literature review. ASAIO J 53(6):666–669. doi:10.1097/MAT.0b013e318155912a

    Article  PubMed  Google Scholar 

  50. Liu Y, Zhang SL, Duan WX, Lei LP, Yu SQ, Qian XH, Jin ZX (2012) The myocardial protective effects of a moderate-potassium blood cardioplegia in pediatric cardiac surgery: a randomized controlled trial. Ann Thorac Surg 94(4):1295–1301. doi:10.1016/j.athoracsur.2012.05.031

    Article  PubMed  Google Scholar 

  51. Luo W, Li B, Lin G, Chen R, Huang R (2008) Does cardioplegia leave room for postconditioning in paediatric cardiac surgery? Cardiol Young 18(3):282–287. doi:10.1017/s1047951108002072

    Article  PubMed  Google Scholar 

  52. Maddali MM, Valliattu J, Fahr J, Al Delamie T, Zacharias S (2006) Myocardial protection during neonatal cardiac surgery. J Trop Pediatr 52(1):59–62. doi:10.1093/tropej/fmi037

    Article  PubMed  Google Scholar 

  53. Meijboom F, Szatmari A, Deckers JW, Utens EM, Roelandt JR, Bos E, Hess J (1996) Long-term follow-up (10 to 17 years) after Mustard repair for transposition of the great arteries. J Thorac Cardiovasc Surg 111(6):1158–1168

    Article  CAS  PubMed  Google Scholar 

  54. Mimic B, Ilic S, Vulicevic I, Milovanovic V, Tomic D, Mimic A, Stankovic S, Zecevic T, Davies B, Djordjevic M (2016) Comparison of high glucose concentration blood and crystalloid cardioplegia in paediatric cardiac surgery: a randomized clinical trial. Interact Cardiovasc Thorac Surg 22(5):553–560. doi:10.1093/icvts/ivv391

    Article  PubMed  PubMed Central  Google Scholar 

  55. Modi P, Suleiman MS, Reeves B, Pawade A, Parry AJ, Angelini GD, Caputo M (2004) Myocardial metabolic changes during pediatric cardiac surgery: a randomized study of 3 cardioplegic techniques. J Thorac Cardiovasc Surg 128(1):67–75. doi:10.1016/j.jtcvs.2003.11.071

    Article  CAS  PubMed  Google Scholar 

  56. Modi P, Suleiman SM, Reeves BC, Pawade A, Parry AJ, Angelini GD, Caputo M (2006) Changes in myocardial free amino acids during pediatric cardiac surgery: a randomised controlled trial of three cardioplegic techniques. Eur J Cardiothorac Surg 30(1):41–48. doi:10.1016/j.ejcts.2006.03.035

    Article  PubMed  Google Scholar 

  57. Mori F, Miyamoto M, Tsuboi H, Noda H, Esato K (1990) Clinical trial of nicardipine cardioplegia in pediatric cardiac surgery. Ann Thorac Surg 49(3):413–417

    Article  CAS  PubMed  Google Scholar 

  58. O’Brien JD, Howlett SE, Burton HJ, O’Blenes SB, Litz DS, Friesen CL (2009) Pediatric cardioplegia strategy results in enhanced calcium metabolism and lower serum troponin T. Ann Thorac Surg 87(5):1517–1523. doi:10.1016/j.athoracsur.2009.02.067

    Article  PubMed  Google Scholar 

  59. Oppido G, Pace Napoleone C, Turci S, Davies B, Frascaroli G, Martin-Suarez S, Giardini A, Gargiulo G (2006) Moderately hypothermic cardiopulmonary bypass and low-flow antegrade selective cerebral perfusion for neonatal aortic arch surgery. Ann Thorac Surg 82(6):2233–2239. doi:10.1016/j.athoracsur.2006.06.042

    Article  PubMed  Google Scholar 

  60. Photiadis J, Asfour B, Sinzobahamvya N, Fink C, Schindler E, Brecher AM, Urban AE (2006) Improved hemodynamics and outcome after modified Norwood operation on the beating heart. Ann Thorac Surg 81(3):976–981. doi:10.1016/j.athoracsur.2005.09.037

    Article  PubMed  Google Scholar 

  61. Poirier NC, Drummond-Webb JJ, Hisamochi K, Imamura M, Harrison AM, Mee RB (2000) Modified Norwood procedure with a high-flow cardiopulmonary bypass strategy results in low mortality without late arch obstruction. J Thorac Cardiovasc Surg 120(5):875–884. doi:10.1067/mtc.2000.109540

    Article  CAS  PubMed  Google Scholar 

  62. Polimenakos AC, Sathanandam SK, Husayni TS, El Zein CF, Roberson DA, Ilbawi MN (2011) Hypoplastic left heart syndrome and aortic atresia-mitral stenosis variant: role of myocardial protection strategy and impact of ventriculo-coronary connections after stage I palliation. Pediatr Cardiol 32(7):929–939. doi:10.1007/s00246-011-0017-6

    Article  PubMed  Google Scholar 

  63. Polimenakos AC, Wojtyla P, Smith PJ, Rizzo V, Nater M, El Zein CF, Ilbawi MN (2011) Post-cardiotomy extracorporeal cardiopulmonary resuscitation in neonates with complex single ventricle: analysis of outcomes. Eur J Cardio-Thorac Surg 40(6):1396–1405. doi:10.1016/j.ejcts.2011.01.087 (discussion 1405)

    Google Scholar 

  64. Poncelet AJ, van Steenberghe M, Moniotte S, Detaille T, Beauloye C, Bertrand L, Nassogne MC, Rubay JE (2011) Cardiac and neurological assessment of normothermia/warm blood cardioplegia vs hypothermia/cold crystalloid cardioplegia in pediatric cardiac surgery: insight from a prospective randomized trial. Eur J Cardiothorac Surg 40(6):1384–1390. doi:10.1016/j.ejcts.2011.03.047

    Article  PubMed  Google Scholar 

  65. Scohy TV, Golab HD, Egal M, Takkenberg JJ, Bogers AJ (2011) Intraoperative glycemic control without insulin infusion during pediatric cardiac surgery for congenital heart disease. Paediatr Anaesth 21(8):872–879. doi:10.1111/j.1460-9592.2011.03571.x

    Article  PubMed  Google Scholar 

  66. Sinha P, Zurakowski D, Jonas RA (2008) Comparison of two cardioplegia solutions using thermodilution cardiac output in neonates and infants. Ann Thorac Surg 86(5):1613–1619. doi:10.1016/j.athoracsur.2008.07.031

    Article  PubMed  Google Scholar 

  67. Suominen PK, Keski-Nisula J, Tynkkynen P, Kantoluoto S, Olkkola KT, Mildh L (2012) The effect of tepid amino acid-enriched induction cardioplegia on the outcome of infants undergoing cardiac surgery. Perfusion 27(4):338–344. doi:10.1177/0267659112442237

    Article  CAS  PubMed  Google Scholar 

  68. Tassani P, Barankay A, Haas F, Paek SU, Heilmaier M, Hess J, Lange R, Richter JA (2002) Cardiac surgery with deep hypothermic circulatory arrest produces less systemic inflammatory response than low-flow cardiopulmonary bypass in newborns. J Thorac Cardiovasc Surg 123(4):648–654

    Article  CAS  PubMed  Google Scholar 

  69. Toyoda Y, Yamaguchi M, Yoshimura N, Oka S, Okita Y (2003) Cardioprotective effects and the mechanisms of terminal warm blood cardioplegia in pediatric cardiac surgery. J Thorac Cardiovasc Surg 125(6):1242–1251

    Article  PubMed  Google Scholar 

  70. Yamaguchi M, Imai M, Ohashi H, Hosokawa Y, Tachibana H, Ito H (1986) Enhanced myocardial protection by systemic deep hypothermia in children undergoing total correction of tetralogy of Fallot. Ann Thorac Surg 41(6):639–646

    Article  CAS  PubMed  Google Scholar 

  71. Young JN, Choy IO, Silva NK, Obayashi DY, Barkan HE (1997) Antegrade cold blood cardioplegia is not demonstrably advantageous over cold crystalloid cardioplegia in surgery for congenital heart disease. J Thorac Cardiovasc Surg 114(6):1002–1008. doi:10.1016/s0022-5223(97)70014-x (discussion 1008–1009)

    Article  CAS  PubMed  Google Scholar 

  72. Croal BL, Hillis GS, Gibson PH, Fazal MT, El-Shafei H, Gibson G, Jeffrey RR, Buchan KG, West D, Cuthbertson BH (2006) Relationship between postoperative cardiac troponin I levels and outcome of cardiac surgery. Circulation 114(14):1468–1475. doi:10.1161/circulationaha.105.602370

    Article  CAS  PubMed  Google Scholar 

  73. Kalyanaraman M, DeCampli WM, Campbell AI, Bhalala U, Harmon TG, Sandiford P, McMahon CK, Shore S, Yeh TS (2008) Serial blood lactate levels as a predictor of mortality in children after cardiopulmonary bypass surgery. Pediatr Crit Care Med 9(3):285–288. doi:10.1097/PCC.0b013e31816c6f31

    Article  PubMed  Google Scholar 

  74. Owen P, du Toit EF, Opie LH (1993) The optimal glucose concentration for intermittent cardioplegia in isolated rat heart when added to St. Thomas’ Hospital cardioplegic solution. J Thorac Cardiovasc Surg 105(6):995–1006

    CAS  PubMed  Google Scholar 

  75. Fujiwara T, Kurtts T, Anderson W, Heinle J, Mayer JE Jr (1988) Myocardial protection in cyanotic neonatal lambs. J Thorac Cardiovasc Surg 96(5):700–710

    CAS  PubMed  Google Scholar 

  76. Silverman NA, Kohler J, Levitsky S, Pavel DG, Fang RB, Feinberg H (1984) Chronic hypoxemia depresses global ventricular function and predisposes to the depletion of high-energy phosphates during cardioplegic arrest: implications for surgical repair of cyanotic congenital heart defects. Ann Thorac Surg 37(4):304–308

    Article  CAS  PubMed  Google Scholar 

  77. Baker-Smith CM, Goldberg SW, Rosenthal GL (2015) Predictors of Prolonged Hospital Length of Stay Following Stage II Palliation of Hypoplastic Left Heart Syndrome (and Variants): analysis of the National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) Database. Pediatr Cardiol 36(8):1630–1641. doi:10.1007/s00246-015-1208-3

    Article  PubMed  Google Scholar 

  78. Hummel BW, Buss RW, DiGiorgi PL, Laviano BN, Yaeger NA, Lucas ML, Comas GM (2016) Myocardial protection and financial considerations of custodiol cardioplegia in minimally invasive and open valve surgery. Innovations 11(6):420–424. doi:10.1097/imi.0000000000000314

    PubMed  Google Scholar 

  79. Fang Y, Long C, Lou S, Guan Y, Fu Z (2015) Blood versus crystalloid cardioplegia for pediatric cardiac surgery: a meta-analysis. Perfusion 30(7):529–536. doi:10.1177/0267659114556402

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: KSM, AT. Acquisition of data: AT, PM. Analysis and interpretation of data: KSM, AT, PM, DS, VB, KPE. Drafting of the manuscript: KSM, AT, PM. Critical revision of the manuscript for important intellectual content: KSM, AT, PM, DS, VB, KPE. Statistical analysis: VB, KSM. Supervision: KPE.

Corresponding author

Correspondence to Konstantinos S. Mylonas.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mylonas, K.S., Tzani, A., Metaxas, P. et al. Blood Versus Crystalloid Cardioplegia in Pediatric Cardiac Surgery: A Systematic Review and Meta-analysis. Pediatr Cardiol 38, 1527–1539 (2017). https://doi.org/10.1007/s00246-017-1732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-017-1732-4

Keywords

Navigation