Skip to main content
Log in

Speckle-Tracking Echocardiographic Measures of Right Ventricular Diastolic Function Correlate with Reference Standard Measures Before and After Preload Alteration in Children

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The accuracy of echocardiographic measures of right ventricular (RV) diastolic function has been sparsely studied. Our objective was to evaluate the correlation between echocardiographic and reference standard measures of RV diastolic function derived from micromanometer pressure analysis before and after preload alteration in children. Echocardiograms and micromanometer pressure analyses were prospectively performed before and after fluid bolus in children undergoing right heart catheterization. The isovolumic relaxation time constant (τ) and end-diastolic pressure (EDP) were measured. Conventional and speckle-tracking echocardiographic (STE) parameters of RV systolic and diastolic function were assessed. Normal saline bolus was given to increase RV EDP by 20 %. Twenty-eight studies were performed in 22 patients with congenital heart disease or postheart transplantation. Mean age was 8.7 ± 6.1 years. RV longitudinal early diastolic strain rate (EDSR) correlated with τ before (r = 0.57, p = 0.001) and after fluid bolus (r = 0.48, p = 0.008). No conventional echocardiographic measures correlated with τ both before and after fluid bolus. Multiple regression analysis revealed RV EDSR and LV circumferential EDSR as independent predictors of RV τ. There were no independent predictors of EDP. RV EDSR appears to correlate with the reference standard measure of early active ventricular relaxation in children at baseline and after changes in preload. Conventional echocardiographic measures of diastolic function were not predictive of diastolic function after preload alteration. Future studies should assess the prognostic significance of STE measures of diastolic function in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aboulhosn JA, Lluri G, Gurvitz MZ, Khairy P, Mongeon FP, Kay J, Valente AM, Earing MG, Opotowsky AR, Lui G, Gersony DR, Cook S, Child J, Ting J, Webb G, Landzberg M, Broberg CS (2013) Left and right ventricular diastolic function in adults with surgically repaired tetralogy of Fallot: a multi-institutional study. Can J Cardiol 29(7):866–872

    Article  PubMed  Google Scholar 

  2. Kassem E, Humpl T, Friedberg MK (2013) Prognostic significance of 2-dimensional, M-mode, and Doppler echo indices of right ventricular function in children with pulmonary arterial hypertension. Am Heart J 165(6):1024–1031

    Article  PubMed  Google Scholar 

  3. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22(2):107–133

    Article  PubMed  Google Scholar 

  4. Dragulescu A, Mertens L, Friedberg MK (2013) Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging 6(2):254–261

    Article  PubMed  Google Scholar 

  5. Rosenzweig EB, Widlitz AC, Barst RJ (2004) Pulmonary arterial hypertension in children. Pediatr Pulmonol 38(1):2–22

    Article  PubMed  Google Scholar 

  6. Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic time constant of isovolumic relaxation pressure-time curve in the canine left ventricle. Better alternative to exponential time constant. Circulation 92(8):2318–2326

    Article  CAS  PubMed  Google Scholar 

  7. Senzaki H, Fetics B, Chen CH, Kass DA (1999) Comparison of ventricular pressure relaxation assessments in human heart failure: quantitative influence on load and drug sensitivity analysis. J Am Coll Cardiol 34(5):1529–1536

    Article  CAS  PubMed  Google Scholar 

  8. Do DH, Therrien J, Marelli A, Martucci G, Afilalo J, Sebag IA (2011) Right atrial size relates to right ventricular end-diastolic pressure in an adult population with congenital heart disease. Echocardiography 28(1):109–116

    Article  PubMed  Google Scholar 

  9. Okumura K, Slorach C, Mroczek D, Dragulescu A, Mertens L, Redington AN, Friedberg MK (2014) Right ventricular diastolic performance in children with pulmonary arterial hypertension associated with congenital heart disease: correlation of echocardiographic parameters with invasive reference standards by high-fidelity micromanometer catheter. Circ Cardiovasc Imaging 7(3):491–501

    Article  PubMed  Google Scholar 

  10. Klima U, Guerrero JL, Vlahakes GJ (1998) Contribution of the interventricular septum to maximal right ventricular function. Eur J Cardiothorac Surg 14(3):250–255

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Yuan J, Qiao S, Duan F, Zhang J, Wang H (2014) Evaluation of left ventricular diastolic function by global strain rate imaging in patients with obstructive hypertrophic cardiomyopathy: a simultaneous speckle tracking echocardiography and cardiac catheterization study. Echocardiography 31(5):615–622

    Article  PubMed  Google Scholar 

  12. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349

    Article  PubMed  Google Scholar 

  13. Pellikka PA, Douglas PS, Miller JG, Abraham TP, Baumann R, Buxton DB, Byrd BF 3rd, Chen P, Cook NL, Gardin JM, Hansen G, Houle HC, Husson S, Kaul S, Klein AL, Lang RM, Leong-Poi H, Lopez H, Mahmoud TM, Maslak S, McCulloch ML, Metz S, Nagueh SF, Pearlman AS, Pibarot P, Picard MH, Porter TR, Prater D, Rodriguez R, Sarano ME, Scherrer-Crosbie M, Shirali GS, Sinusas A, Slosky JJ, Sugeng L, Tatpati A, Villanueva FS, von Ramm OT, Weissman NJ, Zamani S (2013) American society of echocardiography cardiovascular technology and research summit: a roadmap for 2020. J Am Soc Echocardiogr 26(4):325–338

    Article  PubMed  Google Scholar 

  14. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, Tschope C (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116(6):637–647

    Article  PubMed  Google Scholar 

  15. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102(15):1788–1794

    Article  CAS  PubMed  Google Scholar 

  16. Kasner M, Gaub R, Sinning D, Westermann D, Steendijk P, Hoffmann W, Schultheiss HP, Tschope C (2010) Global strain rate imaging for the estimation of diastolic function in HFNEF compared with pressure–volume loop analysis. Eur J Echocardiogr 11(9):743–751

    Article  PubMed  Google Scholar 

  17. Border WL, Michelfelder EC, Glascock BJ, Witt SA, Spicer RL, Beekman RH 3rd, Kimball TR (2003) Color M-mode and Doppler tissue evaluation of diastolic function in children: simultaneous correlation with invasive indices. J Am Soc Echocardiogr 16(9):988–994

    Article  PubMed  Google Scholar 

  18. Schlangen J, Petko C, Hansen JH, Michel M, Hart C, Uebing A, Fischer G, Becker K, Kramer HH (2014) Two-dimensional global longitudinal strain rate is a preload independent index of systemic right ventricular contractility in hypoplastic left heart syndrome patients after fontan operation. Circ Cardiovasc Imaging 7(6):880–886

    Article  PubMed  Google Scholar 

  19. Butts RJ, Chowdhury SM, Buckley J, Hlavacek AM, Hsia TY, Khambadkone S, Baker GH, MOCHA investigators (2015) Comparison of Echocardiographic and pressure–volume loop indices of systolic function in patients with single ventricle physiology: a preliminary report. Congenit Heart Dis 10(1):E17–E24

    Article  PubMed  Google Scholar 

  20. Chowdhury SM, Butts RJ, Buckley J, Hlavacek AM, Hsia TY, Khambadkone S, Baker GH, Investigators M (2014) Comparison of pressure-volume loop and echocardiographic measures of diastolic function in patients with a single-ventricle physiology. Pediatr Cardiol 35(6):998–1006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leeuwenburgh BP, Steendijk P, Helbing WA, Baan J (2002) Indexes of diastolic RV function: load dependence and changes after chronic RV pressure overload in lambs. Am J Physiol Heart Circ Physiol 282(4):H1350–H1358

    Article  CAS  PubMed  Google Scholar 

  22. Burns AT, La Gerche A, D’Hooge J, MacIsaac AI, Prior DL (2010) Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr 11(3):283–289

    Article  PubMed  Google Scholar 

  23. Sundereswaran L, Nagueh SF, Vardan S, Middleton KJ, Zoghbi WA, Quinones MA, Torre-Amione G (1998) Estimation of left and right ventricular filling pressures after heart transplantation by tissue Doppler imaging. Am J Cardiol 82(3):352–357

    Article  CAS  PubMed  Google Scholar 

  24. Savage A, Hlavacek A, Ringewald J, Shirali G (2010) Evaluation of the myocardial performance index and tissue doppler imaging by comparison to near-simultaneous catheter measurements in pediatric cardiac transplant patients. J Heart Lung Transplant 29(8):853–858

    Article  PubMed  Google Scholar 

  25. Firstenberg MS, Levine BD, Garcia MJ, Greenberg NL, Cardon L, Morehead AJ, Zuckerman J, Thomas JD (2000) Relationship of echocardiographic indices to pulmonary capillary wedge pressures in healthy volunteers. J Am Coll Cardiol 36(5):1664–1669

    Article  CAS  PubMed  Google Scholar 

  26. Ohno M, Cheng CP, Little WC (1994) Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89(5):2241–2250

    Article  CAS  PubMed  Google Scholar 

  27. Fyfe DA, Mahle WT, Kanter KR, Wu G, Vincent RN, Ketchum DL (2003) Reduction of tricuspid annular doppler tissue velocities in pediatric heart transplant patients. J Heart Lung Transplant 22(5):553–559

    Article  PubMed  Google Scholar 

  28. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40(4):289–308

    Article  CAS  PubMed  Google Scholar 

  29. Tallaj JA, Kirklin JK, Brown RN, Rayburn BK, Bourge RC, Benza RL, Pinderski L, Pamboukian S, McGiffin DC, Naftel DC (2007) Post-heart transplant diastolic dysfunction is a risk factor for mortality. J Am Coll Cardiol 50(11):1064–1069

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Drs. Chowdhury and Goudar were funded by NIH/NHLBI Grant T32 HL07710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahryar M. Chowdhury.

Ethics declarations

Conflict of interest

None.

Additional information

Shahryar M. Chowdhury and Suma P. Goudar are joint first authors of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S.M., Goudar, S.P., Baker, G.H. et al. Speckle-Tracking Echocardiographic Measures of Right Ventricular Diastolic Function Correlate with Reference Standard Measures Before and After Preload Alteration in Children. Pediatr Cardiol 38, 27–35 (2017). https://doi.org/10.1007/s00246-016-1479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1479-3

Keywords

Navigation