Skip to main content
Log in

Cerebral Near-Infrared Spectroscopy Correlates to Vital Parameters During Cardiopulmonary Bypass Surgery in Children

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

An Erratum to this article was published on 10 June 2014

Abstract

Near-infrared spectroscopy (NIRS) can monitor changes in cerebral regional oxygen saturation (rSO2) and tissue hemoglobin content (HbT). The relation between cerebral NIRS readings and vital parameters has not been analyzed before at a fine temporal scale. This study analyzed this relation during cardiopulmonary bypass (CPB) surgery in 10 children (0–9 years, 1,770 min of data records) by using a novel random-coefficient model. The analysis indicated that a small number of patients is sufficient for obtaining significant results with this model. Changes of vital parameters explained 84.7 % of rSO2 changes and 90.7 % of HbT changes. Cerebral rSO2 correlated positively with perfusion pressure and inversely with body temperature (P < 0.05). Cerebral HbT correlated positively with perfusion pressure, central venous pressure, and temperature and inversely with arterial oxygen saturation (P < 0.05). During hypothermic circulatory arrest, the half-life of the exponential rSO2 decay correlated to the rSO2 reserve (P = 0.016). In conclusion, NIRS readings of cerebral hemoglobin content and tissue oxygen saturation correlate well to vital parameters during CPB surgery in children. NIRS may therefore become a monitoring device for the neuroprotective optimization of those vital parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CPB:

Cardiopulmonary bypass

HbT:

Cerebral tissue hemoglobin content

NIRS:

Near infrared spectroscopy

rSO2:

Cerebral regional oxygen saturation

References

  1. Abdul-Khaliq H, Schubert S, Troitzsch D, Huebler M, Boettcher W, Baur MO et al (2001) Dynamic changes in cerebral oxygenation related to deep hypothermia and circulatory arrest evaluated by near-infrared spectroscopy. Acta Anaesthesiol Scand 45:696–701

    Article  CAS  PubMed  Google Scholar 

  2. Abdul-Khaliq H, Troitzsch D, Schubert S, Wehsack A, Bottcher W, Gutsch E et al (2002) Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Thorac Cardiovasc Surg 50:77–81

    Article  CAS  PubMed  Google Scholar 

  3. Armitage P, Berry G (1994) Statistical methods in medical research, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  4. Ashwood ER, Kost G, Kenny M, Bacher A (1983) Temperature correction of blood-gas and pH measurements. Effects of body temperature on blood gases. Clin Chem 29:1877–1885

    CAS  PubMed  Google Scholar 

  5. Chatfield C (1989) The analysis of time series: an introduction, 4th edn. Chapman & Hall, London

    Google Scholar 

  6. Daubeney PE, Smith DC, Pilkington SN, Lamb RK, Monro JL, Tsang VT et al (1998) Cerebral oxygenation during paediatric cardiac surgery: identification of vulnerable periods using near infrared spectroscopy. Eur J Cardiothorac Surg 13:370–377

    Article  CAS  PubMed  Google Scholar 

  7. Dobson AJ, Barnett AG (2008) An introduction to generalized linear models, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  8. Ginther R, Sebastian VA, Huang R, Leonard SR, Gorney R, Guleserian KJ et al (2011) Cerebral near-infrared spectroscopy during cardiopulmonary bypass predicts superior vena cava oxygen saturation. J Thorac Cardiovasc Surg 142:359–365

    Article  PubMed  Google Scholar 

  9. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt 12:555–563

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman GM, Stuth EA, Jaquiss RD, Vanderwal PL, Staudt SR, Troshynski TJ et al (2004) Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion. J Thorac Cardiovasc Surg 127:223–233

    Article  PubMed  Google Scholar 

  11. Jöbsis FF (1977) Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  12. Kurth CD, Steven JM, Nicolson SC (1995) Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology 82:74–82

    Article  CAS  PubMed  Google Scholar 

  13. Kussman BD, Wypij D, DiNardo JA, Newburger JW, Mayer JE Jr, del Nido PJ et al (2009) Cerebral oximetry during infant cardiac surgery: evaluation and relationship to early postoperative outcome. Anesth Analg 108:1122–1131

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kussman BD, Wypij D, Laussen PC, Soul JS, Bellinger DC, DiNardo JA et al (2010) Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation 122:245–254

    Article  PubMed Central  PubMed  Google Scholar 

  15. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute, Cary

    Google Scholar 

  16. Menke J (2009) Diagnostic accuracy of contrast-enhanced MR angiography in severe carotid stenosis: meta-analysis with metaregression of different techniques. Eur Radiol 19:2204–2216

    Article  PubMed Central  PubMed  Google Scholar 

  17. Menke J (2010) Bivariate random-effects meta-analysis of sensitivity and specificity with SAS PROC GLIMMIX. Methods Inf Med 49:54–64

    CAS  PubMed  Google Scholar 

  18. Menke J, Voss U, Möller G, Jorch G (2003) Reproducibility of cerebral near infrared spectroscopy in neonates. Biol Neonate 83:6–11

    Article  CAS  PubMed  Google Scholar 

  19. Menke J, Stöcker H, Sibrowski W (2004) Cerebral oxygenation and hemodynamics during blood donation studied by near-infrared spectroscopy. Transfusion 44:414–421

    Article  CAS  PubMed  Google Scholar 

  20. Menke J, Larsen J, Kallenberg K (2011) Diagnosing cerebral aneurysms by computed tomographic angiography: meta-analysis. Ann Neurol 69:646–654

    Article  PubMed  Google Scholar 

  21. Morimoto Y, Niida Y, Hisano K, Hua Y, Kemmotsu O, Murashita T et al (2003) Changes in cerebral oxygenation in children undergoing surgical repair of ventricular septal defects. Anaesthesia 58:77–83

    Article  CAS  PubMed  Google Scholar 

  22. Moritz S, Rochon J, Volkel S, Hilker M, Hobbhahn J, Graf BM et al (2010) Determinants of cerebral oximetry in patients undergoing off-pump coronary artery bypass grafting: an observational study. Eur J Anaesthesiol 27:542–549

    Article  CAS  PubMed  Google Scholar 

  23. Ottens J, Tuble SC, Sanderson AJ, Knight JL, Baker RA (2010) Improving cardiopulmonary bypass: does continuous blood gas monitoring have a role to play? J Extra Corpor Technol 42:191–198

    PubMed  Google Scholar 

  24. Tisdall MM, Taylor C, Tachtsidis I, Leung TS, Elwell CE, Smith M (2009) The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers. Anesth Analg 109:906–913

    Article  PubMed Central  PubMed  Google Scholar 

  25. van Staveren HJ, Moes CJ, van Marie J, Prahl SA, van Gemert MJ (1991) Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm. Anesth Analg 30:4507–4514

    Google Scholar 

  26. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93:947–953

    Article  CAS  PubMed  Google Scholar 

  27. Wolf M, Evans P, Bucher HU, Dietz V, Keel M, Strebel R, von Siebenthal K (1997) Measurement of absolute cerebral haemoglobin concentration in adults and neonates. Adv Exp Med Biol 428:219–227

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Menke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menke, J., Möller, G. Cerebral Near-Infrared Spectroscopy Correlates to Vital Parameters During Cardiopulmonary Bypass Surgery in Children. Pediatr Cardiol 35, 155–163 (2014). https://doi.org/10.1007/s00246-013-0754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-013-0754-9

Keywords

Navigation