Skip to main content

Advertisement

Log in

The Role of Serum Response Factor in Early Coronary Vasculogenesis

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alsan BH, Schultheiss TM (2002) Regulation of avian cardiogenesis by FGF8 signaling. Development 129:1935–1943

    CAS  PubMed  Google Scholar 

  2. Arsenian S, Weinhold B, Oelgeschlager M, Ruther U, Nordheim A (1998) Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17:6289–6299

    Article  CAS  PubMed  Google Scholar 

  3. Balza RO Jr, Misra RP (2006) Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 281:6498–6510

    Article  CAS  PubMed  Google Scholar 

  4. Barron M, Gao M, Lough J (2000) Requirement for BMP- and FGF-signaling during cardiogenic induction in nonprecardiac mesoderm is specific, transient, and cooperative. Dev Dyn 218:383–393

    Article  CAS  PubMed  Google Scholar 

  5. Bernanke DH, Velkey JM (2002) Development of the coronary blood supply: changing concepts and current ideas. Anat Rec 269:198–208

    Article  PubMed  Google Scholar 

  6. Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19

    Article  CAS  PubMed  Google Scholar 

  7. Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18:1264–1266

    CAS  PubMed  Google Scholar 

  8. Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844

    Article  CAS  PubMed  Google Scholar 

  9. Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181

    Article  CAS  PubMed  Google Scholar 

  10. Gittenberger-de Groot A, Peeters MV, Mentink M (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052

    CAS  PubMed  Google Scholar 

  11. Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3:544–556

    Article  CAS  PubMed  Google Scholar 

  12. Ishii Y, Langberg JD, Hurtado R, Lee S, Mikawa T (2007) Induction of proepicardial marker gene expression by the liver bud. Development 134:3627–3637

    Article  CAS  PubMed  Google Scholar 

  13. Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M, Nordheim A (2006) Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9:195–204

    Article  PubMed  Google Scholar 

  14. Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F, Wessels A, Moorman AF, van den Hoff MJ (2006) BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 295:507–522

    Article  CAS  PubMed  Google Scholar 

  15. Landerholm TE, Dong XR, Lu J, Belaguli NS, Schwartz RJ, Majesky MW (1999) A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells. Development 126:2053–2062

    CAS  PubMed  Google Scholar 

  16. Lough J, Sugi Y (2000) Endoderm and heart development. Dev Dyn 217:327–342

    Article  CAS  PubMed  Google Scholar 

  17. Lu J, Landerholm T, Wei J, Dong X-R, Wu S-P, Liu X, Nagata K, Inagaki M, Majesky M (2001) Coronary smooth muscle differentiation from proepicardial cells requires RhoA-mediated actin reorganization and p160 Rho-kinase activity. Dev Biol 240:404–418

    Article  CAS  PubMed  Google Scholar 

  18. Mikawa T (1999) Cardiac lineages. In: Harvey RP, Rosenthal N (eds) Heart development. Academic Press, San Diego, pp 19–33

    Chapter  Google Scholar 

  19. Mikawa T, Fischman DA (1992) Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci USA 89:9504–9508

    Article  CAS  PubMed  Google Scholar 

  20. Mikawa T, Gourdie R (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232

    Article  CAS  PubMed  Google Scholar 

  21. Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J (2001) Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 234:204–215

    Article  CAS  PubMed  Google Scholar 

  22. Morabito C, Kattan J, Bristow J (2002) Mechanisms of embryonid coronary artery development. Curr Opin Cardiol 17:235–241

    Article  PubMed  Google Scholar 

  23. Munoz-Chapuli R, Macias D, Gonzalez-Iriarte M, Carmona R, Atencia G, Perez-Pomares JM (2002) The epicardium and epicardial-derived cells: multiple functions in cardiac development. Rev Esp Cardiol 55:1070–1082

    PubMed  Google Scholar 

  24. Nelson TJ, Duncan SA, Misra RP (2004) Conserved enhancer in the serum response factor promoter controls expression during early coronary vasculogenesis. Circ Res 94:1059–1066

    Article  CAS  PubMed  Google Scholar 

  25. Olivey HE, Compton LA, Barnett JV (2004) Coronary vessel development: the epicardium delivers. Trends Cardiovasc Med 14:247–251

    CAS  PubMed  Google Scholar 

  26. Olivey HE, Mundell NA, Austin AF, Barnett JV (2006) Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn 235:50–59

    Article  CAS  PubMed  Google Scholar 

  27. Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1997) Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn 210:96–105

    Article  CAS  PubMed  Google Scholar 

  28. Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1998) The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol 200:57–68

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R (2002) Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 46:1005–1013

    CAS  PubMed  Google Scholar 

  30. Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B (1993) Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73:559–568

    CAS  PubMed  Google Scholar 

  31. Psichari E, Balmain A, Plows D, Zoumpourlis V, Pintzas A (2002) High activity of serum response factor in the mesenchymal transition of epithelial tumor cells is regulated by RhoA signaling. J Biol Chem 277:29490–29495

    Article  CAS  PubMed  Google Scholar 

  32. Reese DE, Mikawa T, Bader DM (2002) Development of the coronary vessel system. Circ Res 91:761–768

    Article  CAS  PubMed  Google Scholar 

  33. Schlueter J, Manner J, Brand T (2006) BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol 295:546–558

    Article  CAS  PubMed  Google Scholar 

  34. Sengbusch JK, He W, Pinco KA, Yang JT (2002) Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 157:873–882

    Article  CAS  PubMed  Google Scholar 

  35. Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739

    Article  CAS  PubMed  Google Scholar 

  36. Van den Eijnde SM, Wenink AC, Vermeij-Keers C (1995) Origin of subepicardial cells in rat embryos. Anat Rec 242:96–102

    Article  PubMed  Google Scholar 

  37. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol 199:367–378

    Article  CAS  PubMed  Google Scholar 

  38. Watt AJ, Battle MA, Li J, Duncan SA (2004) GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA 101:12573–12578

    Article  CAS  PubMed  Google Scholar 

  39. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. John Lough, Stephen Duncan, and Mary Holtz for helpful discussions. Because this review was necessarily limited in scope and size, the author apologizes in advance to those whose work may not have been cited. This study was supported by NIH: R01 HL084636, and Advancing Healthier Wisconsin Grant, and the Sophia Wolffe Quadracci Memorial Fund for Stem Cell Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, R.P. The Role of Serum Response Factor in Early Coronary Vasculogenesis. Pediatr Cardiol 31, 400–407 (2010). https://doi.org/10.1007/s00246-009-9614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9614-z

Keywords

Navigation