Skip to main content

Advertisement

Log in

Epicardial Control of Myocardial Proliferation and Morphogenesis

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The epicardium is a critical tissue that directs several aspects of heart development, particularly via the secretion of soluble factors. This review summarizes recent approaches that implicate the epicardium as the source of mitogenic factors promoting cardiomyocyte proliferation, as the source of instructive signals that direct compact zone organization (morphogenesis), and as the tissue that directs formation of the coronary vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Armstrong JF, Pritchard-Jones K, Bickmore WA et al (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40:85–97

    Article  PubMed  CAS  Google Scholar 

  2. Austin AF, Compton LA, Love JD et al (2008) Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Dev Dyn 237:366–376

    Article  PubMed  CAS  Google Scholar 

  3. Berthet C, Klarmann KD, Hilton MB et al (2006) Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 10:563–573

    Article  PubMed  CAS  Google Scholar 

  4. Cai CL, Martin JC, Sun Y et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature. 454:104–108

    Article  PubMed  CAS  Google Scholar 

  5. Chen H, Shi S, Acosta L, Li W et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    Article  PubMed  CAS  Google Scholar 

  6. Chen TH, Chang TC, Kang JO et al (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207

    Article  PubMed  CAS  Google Scholar 

  7. Christoffels VM, Keijser AG, Houweling AC et al (2000) Patterning the embryonic heart: Identification of five mouse Iroquois homeobox genes in the developing heart. Dev Biol 224:263–274

    Article  PubMed  CAS  Google Scholar 

  8. Cohen-Gould L, Mikawa T (1996) The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev Biol 177:265–273

    Article  PubMed  CAS  Google Scholar 

  9. Corson LB, Yamanaka Y, Lai KM, Rossant J (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130:4527–4537

    Article  PubMed  CAS  Google Scholar 

  10. Dokic D, Dettman RW (2006) VCAM–1 inhibits TGFbeta stimulated epithelial-mesenchymal transformation by modulating Rho activity and stabilizing intercellular adhesion in epicardial mesothelial cells. Dev Biol 299:489–504

    Article  PubMed  CAS  Google Scholar 

  11. Dyson E, Sucov HM, Kubalak SW et al (1995) Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha −/− mice. Proc Natl Acad Sci USA 92:7386–7390

    Article  PubMed  CAS  Google Scholar 

  12. Eid H, Larson DM, Springhorn JP et al (1992) Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res 71:40–50

    PubMed  CAS  Google Scholar 

  13. Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6

    PubMed  CAS  Google Scholar 

  14. Franko AJ, Sutherland RM (1979) Oxygen diffusion distance and development of necrosis in multicell spheroids. Radiat Res 79:439–453

    Article  PubMed  CAS  Google Scholar 

  15. French WJ, Creemers EE, Tallquist MD (2008) Platelet-derived growth factor receptors direct vascular development independent of vascular smooth muscle cell function. Mol Cell Biol 28:5646–5657

    Article  PubMed  CAS  Google Scholar 

  16. Gassmann M, Casagranda F, Orioli D et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–394

    Article  PubMed  CAS  Google Scholar 

  17. Gittenberger-de Groot AC, Vrancken Peeters MP et al (2000) Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 87:969–971

    PubMed  CAS  Google Scholar 

  18. Ishii Y, Langberg J, Rosborough K, Mikawa T (2009) Endothelial cell lineages of the heart. Cell Tissue Res 335:67–73

    Google Scholar 

  19. Jaber M, Koch WJ, Rockman H et al (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 93:12974–12979

    Article  PubMed  CAS  Google Scholar 

  20. Jackson T, Allard MF, Sreenan CM et al (1990) The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 10:3709–3716

    PubMed  CAS  Google Scholar 

  21. Jiang X, Rowitch DH, Soriano P et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    PubMed  CAS  Google Scholar 

  22. Kang J, Gu Y, Li P, Johnson BL et al (2008) PDGF-A as an epicardial mitogen during heart development. Dev Dyn 237:692–701

    Article  PubMed  CAS  Google Scholar 

  23. Kang JO, Sucov HM (2005) Convergent proliferative response and divergent morphogenic pathways induced by epicardial and endocardial signaling in fetal heart development. Mech Dev 122:57–65

    Article  PubMed  CAS  Google Scholar 

  24. Kochilas LK, Li J, Jin F et al (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45:635–642

    Article  PubMed  CAS  Google Scholar 

  25. Koera K, Nakamura K, Nakao K et al (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15:1151–1159

    Article  PubMed  CAS  Google Scholar 

  26. Kozar K, Ciemerych MA, Rebel VI et al (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491

    Article  PubMed  CAS  Google Scholar 

  27. Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  PubMed  CAS  Google Scholar 

  28. Kwee L, Baldwin HS, Shen HM et al (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503

    PubMed  CAS  Google Scholar 

  29. Lavine KJ, Long F, Choi K et al (2008) Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135:3161–3171

    Article  PubMed  CAS  Google Scholar 

  30. Lavine KJ, Schmid GJ, Smith CS, Ornitz DM (2008) Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Dev Dyn 237:713–724

    Article  PubMed  CAS  Google Scholar 

  31. Lavine KJ, White AC, Park C et al (2006) Fibroblast growth factor signals regulate a wave of hedgehog activation that is essential for coronary vascular development. Genes Dev 20:1651–1666

    Article  PubMed  CAS  Google Scholar 

  32. Lavine KJ, Yu K, White AC et al (2005) Endocardial and epicardial-derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 8:85–95

    Article  PubMed  CAS  Google Scholar 

  33. Lee KF, Simon H, Chen H et al (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398

    Article  PubMed  CAS  Google Scholar 

  34. Lu SY, Sheikh F, Sheppard PC et al (2008) FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun 373:270–274

    Article  PubMed  CAS  Google Scholar 

  35. Manner J (1993) Experimental study on the formation of the epicardium in chick embryos. Anat Embryol Berl 187:281–289

    Article  PubMed  CAS  Google Scholar 

  36. Markwald RR, Fitzharris TP, Manasek FJ (1977) Structural development of endocardial cushions. Am J Anat 148:85–120

    Article  PubMed  CAS  Google Scholar 

  37. Merki E, Zamora M, Raya A et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA 102:18455–18460

    Article  PubMed  CAS  Google Scholar 

  38. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390

    Article  PubMed  CAS  Google Scholar 

  39. Meyer D, Yamaai T, Garratt A et al (1997) Isoform-specific expression and function of neuregulin. Development 124:3575–3586

    PubMed  CAS  Google Scholar 

  40. Mikawa T (1999) Cardiac lineages. In: Harvey RP, Rosenthal N (eds) Heart development. Academic Press, San Diego, pp 19–33

    Chapter  Google Scholar 

  41. Moens CB, Stanton BR, Parada LF, Rossant J (1993) Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 119:485–499

    PubMed  CAS  Google Scholar 

  42. Montano MM, Doughman YQ, Deng H et al (2008) Mutation of the HEXIM1 gene results in defects during heart and vascular development partly through downregulation of vascular endothelial growth factor. Circ Res 102:415–422

    Article  PubMed  CAS  Google Scholar 

  43. Moore AW, McInnes L, Kreidberg J et al (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857

    PubMed  CAS  Google Scholar 

  44. Morabito CJ, Dettman RW, Kattan J et al (2001) Positive and negative regulation of epicardial–mesenchymal transformation during avian heart development. Dev Biol 234:204–215

    Article  PubMed  CAS  Google Scholar 

  45. Morris JK, Lin W, Hauser C et al (1999) Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23:273–283

    Article  PubMed  CAS  Google Scholar 

  46. Moss JB, Xavier-Neto J, Shapiro MD et al (1998) Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199:55–71

    Article  PubMed  CAS  Google Scholar 

  47. Nystrom AM, Ekvall S, Berglund E et al (2008) Noonan and cardiofaciocutaneous syndromes: two clinically and genetically overlapping disorders. J Med Genet 45:500–506

    Article  PubMed  Google Scholar 

  48. Ong LL, Kim N, Mima T et al (1998) Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity. Dev Biol 193:1–9

    Article  PubMed  CAS  Google Scholar 

  49. Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90:1044–1054

    Article  PubMed  CAS  Google Scholar 

  50. Pennisi DJ, Ballard VL, Mikawa T (2003) Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR–1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn 228:161–172

    Article  PubMed  CAS  Google Scholar 

  51. Perez-Pomares JM, Phelps A, Sedmerova M et al (2002) Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 247:307–326

    Article  PubMed  CAS  Google Scholar 

  52. Poelmann RE, Molin D, Wisse LJ, Gittenberger-de Groot AC (2000) Apoptosis in cardiac development. Cell Tissue Res 301:43–52

    Article  PubMed  CAS  Google Scholar 

  53. Razzaque MA, Nishizawa T, Komoike Y et al (2007) Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 39:1013–1017

    Article  PubMed  CAS  Google Scholar 

  54. Rossant J (1996) Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ Res 78:349–353

    PubMed  CAS  Google Scholar 

  55. Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol 51:186–273

    PubMed  CAS  Google Scholar 

  56. Sedmera D, Thomas PS (1996) Trabeculation in the embryonic heart. Bioessays 18:607

    Article  PubMed  CAS  Google Scholar 

  57. Sengbusch JK, He W, Pinco KA, Yang JT (2002) Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 157:873–882

    Article  PubMed  CAS  Google Scholar 

  58. Sridurongrit S, Larsson J, Schwartz R et al (2008) Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol 322:208–218

    Article  PubMed  CAS  Google Scholar 

  59. Stuckmann I, Evans S, Lassar AB (2003) Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol 255:334–349

    Article  PubMed  CAS  Google Scholar 

  60. Sucov HM, Dyson E, Gumeringer CL et al (1994) RXRalpha-mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018

    Article  PubMed  CAS  Google Scholar 

  61. Tidcombe H, Jackson-Fisher A, Mathers K et al (2003) Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci USA 100:8281–8286

    Article  PubMed  CAS  Google Scholar 

  62. Tran CM, Sucov HM (1998) The RXRalpha gene functions in a non–cell-autonomous manner during mouse cardiac morphogenesis. Development 125:1951–1956

    PubMed  CAS  Google Scholar 

  63. Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168

    Article  PubMed  CAS  Google Scholar 

  64. Wada AM, Smith TK, Osler ME et al (2003) Epicardial/mesothelial cell line retains vasculogenic potential of embryonic epicardium. Circ Res 92:525–531

    Article  PubMed  CAS  Google Scholar 

  65. Woldeyesus MT, Britsch S, Riethmacher D et al (1999) Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev 13:2538–2548

    Article  PubMed  CAS  Google Scholar 

  66. Wu H, Lee SH, Gao J et al (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605

    PubMed  CAS  Google Scholar 

  67. Zamora M, Manner J, Ruiz-Lozano P (2007) Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci USA 104:18109–18114

    Article  PubMed  CAS  Google Scholar 

  68. Zhou B, Ma Q, Rajagopal S et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research in the laboratory of H. M. Sucov described in this review was supported by NIH grant HL070123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry M. Sucov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sucov, H.M., Gu, Y., Thomas, S. et al. Epicardial Control of Myocardial Proliferation and Morphogenesis. Pediatr Cardiol 30, 617–625 (2009). https://doi.org/10.1007/s00246-009-9391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9391-8

Keywords

Navigation