Skip to main content

Advertisement

Log in

Renal Function of Patients with a Failing Fontan Circuit Undergoing Total Cavopulmonary Revision Surgery

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

This report characterizes renal dysfunction after total cavopulmonary (TCPC) revision surgery for atriopulmonary Fontan (APF) circulations, a known risk factor for a poor outcome. The perioperative data for 23 consecutively identified patients were reviewed. The preoperative mean glomerular filtration rate (GFR) was 101 ± 30 ml/min/1.73 m2, decreasing to 65 ± 41 ml/min/1.73 m2 early in the postoperative period. The preoperative GFR was highly correlated with age at APF (r = −0.5; p = 0.024), age at TCPC (r = −0.5; p = 0.01), and mixed venous saturation (r = 0.6; p = 0.01). Three of four patients requiring renal replacement therapy (RRT) died at a median age of 3 months (range, 18 days to 9 months). Determinants of early GFR and RRT were preoperative GFR (p = 0.016) and creatinine (p = 0.035). Younger age at primary Fontan (p = 0.008), higher preoperative mixed venous saturation (p = 0.019), and higher preoperative blood pressure (p = 0.006) independently predicted better GFRs at the latest follow-up evaluation. Renal function declines acutely after TCPC revision, often necessitating RRT. A requirement for RRT marks greater mortality. Higher preoperative creatinine levels identify those at greatest risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gewillig M (2005) The Fonta circulation. Heart 6:839–846

    Article  Google Scholar 

  2. De Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations: experimental studies and early clinical experience. J Thorac Cardiovasc Surg 5:682–695

    Google Scholar 

  3. Deal BJ, Mavroudis C, Backer CL et al (1999) Impact of arrhythmia circuit cryoablation during Fontan conversion for refractory atrial tachycardia. Am J Cardiol 4:563–568

    Article  Google Scholar 

  4. Mavroudis C, Backer CL, Deal BJ, Johnsrude CL (1998) Fontan conversion to cavopulmonary connection and arrhythmia circuit cryoblation. J Thorac Cardiovasc Surg 3:547–556

    Google Scholar 

  5. Mavroudis C, Backer CL, Deal BJ et al (2001) Total cavopulmonary conversion and maze procedure for patients with failure of the Fontan operation. J Thorac Cardiovasc Surg 5:863–871

    Article  Google Scholar 

  6. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 6:461–470

    Google Scholar 

  7. National Kidney Foundation (2006) Retrieved March 2006 at http://www.kidney.org/professionals/kdoqi/gfr_calculator.cfm or http://www.kidney.org/professionals/kdoqi/gfr_calculatorPed.cfm

  8. Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 2:259–263

    Google Scholar 

  9. Martini S, Prevot A, Mosig D et al (2003) Glomerular filtration rate: measure creatinine and height rather than cystatin C! Acta Paediatr 9:1052–1057

    Google Scholar 

  10. Sheikh AM, Tang AT, Roman K et al (2004) The failing Fontan circulation: successful conversion of atriopulmonary connections. J Thorac Cardiovasc Surg 1:60–6618

    Google Scholar 

  11. Bolger AP, Sharma R, Li W et al (2002) Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation 1:92–99

    Article  Google Scholar 

  12. Bellomo R, Ronco C (1998) The kidney in heart failure. Kidney Int Suppl 66:558–561

    Google Scholar 

  13. Dimopoulos K, Gerhard-Paul Diller GP, Koltsida E et al (2008) Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease. Circulation 117:2320–2328

    Article  PubMed  Google Scholar 

  14. Middlekauff HR, Nitzsche EU, Hoh CK et al (2000) Exaggerated renal vasoconstriction during exercise in heart failure patients. Circulation 101:784–789

    PubMed  CAS  Google Scholar 

  15. Magee AG, McCrindle BW, Mawson J et al (1998) Systemic venous collateral development after the bidirectional cavopulmonary anastomosis: prevalence and predictors. J Am Coll Cardiol 2:502–508

    Article  Google Scholar 

  16. Perloff JK, Latta H, Barsotti P (2000) Pathogenesis of the glomerular abnormality in cyanotic congenital heart disease. Am J Cardiol 11:1198–1204

    Article  Google Scholar 

  17. Awad H, El-Safty I, Bdel-Gawad M, el-Said S (2003) Glomerular and tubular dysfunction in children with congenital cyanotic heart disease: effect of palliative surgery. Am J Med Sci 3:110–114

    Article  Google Scholar 

  18. Spence MS, Balaratnam MS, Gatzoulis MA (2007) Clinical update: cyanotic adult congenital heart disease. Lancet 370:1530–1532

    Article  PubMed  Google Scholar 

  19. Hillege HL, Girbes AR, de Kam PJ et al (2000) Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 102:203–210

    PubMed  CAS  Google Scholar 

  20. Vida VL, Mack R, Barnoya J et al (2005) The association of renal tubular acidosis and cyanotic congenital heart disease. J Thorac Cardiovasc Surg 5:1466–1467

    Article  Google Scholar 

  21. Dittrich S, Haas NA, Buhrer C et al (1998) Renal impairment in patients with long-standing cyanotic congenital heart disease. Acta Paediatr 9:949–954

    Article  Google Scholar 

  22. Burlet A, Drukker A, Guignard JP (1999) Renal function in cyanotic congenital heart disease. Nephron 3:296–300

    Article  Google Scholar 

  23. Chertow GM, Lazarus JM, Christiansen CL et al (1997) Preoperative renal risk stratification. Circulation 4:878–884

    Google Scholar 

  24. Conlon PJ, Stafford-Smith M, White WD et al (1999) Acute renal failure following cardiac surgery. Nephrol Dial Transplant 5:1158–1162

    Article  Google Scholar 

  25. Kilo J, Margreiter JE, Ruttmann E et al (2005) Slightly elevated serum creatinine predicts renal failure requiring hemofiltration after cardiac surgery. Heart Surg Forum 1:E34–E38

    Article  Google Scholar 

  26. Journois D (1998) Hemofiltration during cardiopulmonary bypass. Kidney Int Supp 66:S174–S177

    CAS  Google Scholar 

  27. Boldt J, Brenner T, Lehmann A et al (2003) Is kidney function altered by the duration of cardiopulmonary bypass? Ann Thorac Surg 3:906–912

    Article  Google Scholar 

  28. Landoni G, Zangrillo A, Franco A et al (2006) Long-term outcome of patients who require renal replacement therapy after cardiac surgery. Eur J Anaesthesiol 1:17–22

    Google Scholar 

  29. Jin SM, Noh C, Bae EJ et al (2007) Impaired vascular function in patients with Fontan circulation. Int J Cardiol 2:221–226

    Article  Google Scholar 

  30. Perrone RD, Steinman TI, Beck GJ et al (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis 3:223–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatin Sammour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sammour, F., Haw, M., Paisey, J. et al. Renal Function of Patients with a Failing Fontan Circuit Undergoing Total Cavopulmonary Revision Surgery. Pediatr Cardiol 30, 282–288 (2009). https://doi.org/10.1007/s00246-008-9344-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-008-9344-7

Keywords

Navigation