Skip to main content

Advertisement

Log in

Cardiovascular Complications Associated with Chronic Active Epstein–Barr Virus Infection

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

This study aimed to assess the outcome of cardiovascular diseases for patients with chronic active Epstein–Barr virus infection (CAEBV). The study enrolled 15 patients (7 boys and 8 girls) who fulfilled the diagnostic criteria for CAEBV, including 10 patients with T-cell type and 3 patients with natural killer (NK)-cell type. The median age at the CAEBV onset was 6.3 years (range, 1.2–17.8 years). Regular cardiologic studies were performed during the median follow-up period of 8 years (range, 2–20 years). Nine patients (60%) had cardiac diseases including coronary artery lesion (CAL) (n = 4, 44%), decreased left ventricular ejection fraction and pericardial effusion in (n = 3, 33%), complete atrioventricular block (n = 1), and sudden arrest (n = 1). The frequency of fever (78%, p = 0.04) or cytopenias (100%, p = 0.01), as the major symptom among patients with cardiac complications, was higher than among those without complications. The median time from disease onset to detection of CAL was 3.4 years (range, 1.8–8.6 years). The mean z-score increased to 3.98. Seven patients (78%) with cardiac complications died of disease progression, hematopoietic stem cell transplantation–related events, or both. In two patients, CAL regressed after allogeneic cord blood transplantation. Among CAEBV patients, CAL was the most common cardiac complication and could not be controlled without the eradication of EBV-infected T- and NK-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMT:

Bone marrow transplantation

CAL:

Coronary artery lesion

CBT:

Cord blood transplantation

CAEBV:

Chronic active Epstein–Barr virus infection

HSCT:

Hematopoietic stem cell transplantation

LVEF:

Left ventricular ejection fraction

References

  1. Brown TJ, Crawford SE, Cornwall ML, Garcia F, Shulman ST, Rowley AH (2001) CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J Infect Dis 184:940–943

    Article  PubMed  CAS  Google Scholar 

  2. Burns JC, Glodé MP (2004) Kawasaki syndrome. Lancet 364:533–544

    Article  PubMed  Google Scholar 

  3. Chuang HC, Lay JD, Chuang SE et al (2007) Epstein–Barr virus (EBV) latent membrane protein-1 downregulates tumor necrosis factor-alpha (TNF-alpha) receptor-1 and confers resistance to TNF-alpha-induced apoptosis in T-cells: implication for the progression to T-cell lymphoma in EBV-associated hemophagocytic syndrome. Am J Pathol 170:1607–1617

    Article  PubMed  CAS  Google Scholar 

  4. Culora GA, Moore IE (1997) Kawasaki disease, Epstein–Barr virus, and coronary artery aneurysms. J Clin Pathol 50:161–163

    Article  PubMed  CAS  Google Scholar 

  5. De Zorzi A, Colan SD, Gauvreau K et al (1998) Coronary artery dimensions may be misclassified as normal in Kawasaki disease. J Pediatr 133:254–258

    Article  PubMed  Google Scholar 

  6. Fujiwara M, Shimozono H, Ono H et al (2003) Polyclonal proliferation of lymphocytes containing the Epstein–Barr virus genome in a patient dying of myocarditis in chronic active Epstein–Barr virus infection. J Pediatr Hematol Oncol 25:85–88

    Article  PubMed  Google Scholar 

  7. Gallot G, Hamidou MA, Clémenceau B et al (2006) T-cell repertoire and Epstein–Barr virus-specific T-cell response in chronic active Epstein–Barr virus infection: a case study. Clin Immunol 119:79–86

    Article  PubMed  CAS  Google Scholar 

  8. Hauptmann S, Meru N, Schewe C et al (2001) Fatal atypical T-cell proliferation associated with Epstein–Barr virus infection. Br J Haematol 112:377–380

    Article  PubMed  CAS  Google Scholar 

  9. Ishimura M, Ohga S, Nomura A et al (2005) Successful umbilical cord blood transplantation for severe chronic Epstein–Barr virus infection after the double failure of hematopoietic stem cell transplantation. Am J Hemtol 80:207–212

    Article  Google Scholar 

  10. Iwatsuki K, Satoh M, Yamamoto T et al (2006) Pathogenic link between hydroa vacciniforme and Epstein–Barr virus–associated hematologic disorders. Arch Dermatol 142:587–595

    Article  PubMed  CAS  Google Scholar 

  11. Jeanette JC (2006) Implication for pathogenesis of patterns of injury in small- and medium-sized vessel vasculitis. Cleveland Clin J Med 69:SII-33–SII-38

    Google Scholar 

  12. Kanamaru H, Sato Y, Takayama T et al (2005) Assessment of coronary artery abnormalities by multislice spiral computed tomography in adolescents and young adults with Kawasaki disease. Am J Cardiol 95:522–525

    Article  PubMed  Google Scholar 

  13. Kanno H, Onodera H, Endo M et al (2005) Vascular lesion in a patient of chronic active Epstein–Barr virus infection with hypersensitivity to mosquito bites: vasculitis induced by mosquito bite with the infiltration of nonneoplastic Epstein–Barr virus-positive cells and subsequent development of natural killer/T-cell lymphoma with angiodestruction. Human Pathol 36:212–218

    Article  Google Scholar 

  14. Kasahara Y, Yachie A, Takei K et al (2001) Differential cellular targets of Epstein–Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood 98:1882–1888

    Article  PubMed  CAS  Google Scholar 

  15. Kikuta H, Taguchi Y, Tomizawa K et al (1988) Epstein–Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333:455–457

    Article  PubMed  CAS  Google Scholar 

  16. Kikuta H, Sakiyama Y, Matsumoto S et al (1993) Detection of Epstein–Barr virus DNA in cardiac and aortic tissue from chronic, active Epstein–Barr virus infection associated with Kawasaki-disease like coronary artery aneurysms. J Pediatr 123:90–92

    Article  PubMed  CAS  Google Scholar 

  17. Kimura H, Hoshino Y, Kanegane H et al (2001) Clinical and virologic characteristics of chronic active Epstein–Barr virus infection. Blood 98:280–286

    Article  PubMed  CAS  Google Scholar 

  18. Kimura H, Morishima T, Kanegane H et al (2003) Prognostic factors for chronic active Epstein–Barr virus infection. J Infect Dis 187:527–533

    Article  PubMed  Google Scholar 

  19. Kurotobi S, Nagai T, Kawakami N, Sano T (2002) Coronary diameter in normal infants, children, and patients with Kawasaki disease. Pediatr Int 44:1–4

    Article  PubMed  Google Scholar 

  20. Lay JD, Chuang SE, Rowe M, Su IJ (2003) Epstein–Barr virus latent membrane protein-1 mediates upregulation of tumor necrosis factor-alpha in EBV-infected T-cells: implications for the pathogenesis of hemophagocytic syndrome. J Biomed Sci 10:146–155

    PubMed  CAS  Google Scholar 

  21. Murakami K, Ohsawa M, Hu SX et al (1998) Large-vessel arteritis associated with chronic active Epstein–Barr virus infection. Arthritis Rheum 41:369–373

    Article  PubMed  CAS  Google Scholar 

  22. Muso E, Fujiwara H, Yoshida H et al (1993) Epstein–Barr virus genome-positive tubulointerstitial nephritis associated with Kawasaki disease-like coronary aneurysms. Clin Nephrol 40:7–15

    PubMed  CAS  Google Scholar 

  23. Nakagawa A, Ito M, Iwaki T et al (1996) Chronic active Epstein–Barr virus infection with giant coronary aneurysms. Am J Clin Pathol 105:733–736

    PubMed  CAS  Google Scholar 

  24. Nakagawa A, Ito M, Saga S (2002) Fatal cytotoxic T-cell proliferation in chronic active Epstein–Barr virus infection in childhood. Am J Clin Pathol 117:283–290

    Article  PubMed  Google Scholar 

  25. Newberger JW, Takahashi M, Gerber MA et al (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 110:2747–2761

    Article  Google Scholar 

  26. Okano M, Kawa K, Kimura H et al (2005) Proposed guidelines for diagnosing chronic active Epstein–Barr virus infection. Am J Hematol 80:64–69

    Article  PubMed  Google Scholar 

  27. Ohga S, Nomura A, Takada H et al (2001) Epstein–Barr virus (EBV) load and cytokine gene expression in activated T-cells of chronic active EBV infection. J Infect Dis 183:1–7

    Article  PubMed  CAS  Google Scholar 

  28. Ohga S, Nomura A, Takada H et al (2004) Dominant expression of interleukin-10 and transforming growth factor-β genes in activated T-cells of chronic active Epstein–Barr virus infection. J Med Virol 74:449–458

    Article  PubMed  CAS  Google Scholar 

  29. Ohshima K, Suzumiya J, Sugihara M et al (1998) Clinicopathological study of severe chronic active Epstein–Barr virus infection that developed in association with lymphoproliferative disorder and/or hemophagocytic syndrome. Pathol Int 48:934–943

    Article  PubMed  CAS  Google Scholar 

  30. Ottaviani G, Matturri L, Rossi L, Jones D (2003) Sudden death due to lymphomatous infiltration of the cardiac conduction system. Cardiovasc Pathol 12:77–81

    Article  PubMed  Google Scholar 

  31. Sato Y, Tsuboi T, Mikami T et al (2006) Chronic active Epstein–Barr virus infection with dilatation of the Valsalva sinus. Pediatr Int 48:643–645

    Article  PubMed  Google Scholar 

  32. Satoh M, Oyama N, Akiba H et al (2002) Hypersensitivity to mosquito bites with natural-killer cell lymphocytosis: the possible implication of Epstein–Barr virus reactivation. Eur J Dermatol 12:381–384

    PubMed  Google Scholar 

  33. Takano H, Nakagawa K, Ishio N et al (2008) Active myocarditis in a patient with chronic active Epstein–Barr virus infection. Int J Cardiol 130:e11–e13

    Article  PubMed  Google Scholar 

  34. Teruya-Feldstein J, Jaffe ES, Burd JP et al (1997) The role of Mig, the monokine induced by interferon-γ, and IP-10, the interferon-γ-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein–Barr virus-positive lymphoproliferative disease. Blood 90:4099–4105

    PubMed  CAS  Google Scholar 

  35. Toubo T, Ohga S, Takada H et al (2006) Rheumatic fever–mimicking carditis as a first presentation of chronic active Epstein–Barr virus infection. Acta Pediatr 95:614–621

    Article  Google Scholar 

  36. Tsuda E, Kamiya T, Kimura K et al (2002) Coronary artery dilatation exceeding 4.0 mm during acute Kawasaki disease predicts a high probability of subsequent late intima-medial thickening. Pediatr Cardiol 23:9–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) to Shouichi Ohga and a grant by the Ministry of Education, Culture, Sports, Science and Technology of Japan to Jun Muneuchi. We thank Dr. Brian Thomas Quinn (Associate Professor, Department of Linguistic Environment, Faculty of Languages and Cultures, Kyushu University) for kindly correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouichi Ohga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muneuchi, J., Ohga, S., Ishimura, M. et al. Cardiovascular Complications Associated with Chronic Active Epstein–Barr Virus Infection. Pediatr Cardiol 30, 274–281 (2009). https://doi.org/10.1007/s00246-008-9343-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-008-9343-8

Keywords

Navigation