Skip to main content
Log in

The Analysis of Approximate Controllability for Distributed Order Fractional Diffusion Problems

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

To characterize the ultra-slow diffusion processes with time-dependent logarithmical law attenuation, the distributed order fractional diffusion equation is needed. This paper discusses an analysis of approximate controllability from the exterior of distributed order fractional diffusion problem with the fractional Laplace operator subject to the non-zero exterior condition. We first establish some well-posedness results, such as the existence, uniqueness and regularity of the solutions allowing the weighted function \(\mu \) that may be non-continuous. Especially, we show that the solutions can be represented by the series for the integral of a real-valued function. After giving the unique continuation property of the adjoint system, approximate controllability of the system is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40, 6287–303 (2007)

    Article  MathSciNet  Google Scholar 

  2. Amann, H.: Linear and Quasilinear Parabolic Problems, Abstract Linear Theory, vol. 1. Birkhauser, Berlin (1995)

    Book  Google Scholar 

  3. Bobylev, A.V., Cercignani, C.: The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation. Appl. Math. Lett. 15, 807–813 (2002)

    Article  MathSciNet  Google Scholar 

  4. Claus, B., Warma, M.: Realization of the fractional Laplacian with nonlocal exterior conditions via forms method. J. Evol. Equ. 20, 1597–1631 (2020)

    Article  MathSciNet  Google Scholar 

  5. Dipierro, S., Ros-Oton, X., Valdinoci, E.: Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33(2), 377–416 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ghosh, T., Salo, M., Uhlmann, G.: The Calderón problem for the fractional Schrödinger equation. Anal. PDE 13(2), 455–475 (2020)

    Article  MathSciNet  Google Scholar 

  7. Ghosh, T., Rüland, A., Salo, M., Uhlmann, G.: Uniqueness and reconstruction for the fractional Calderón problem with a single measurement. J. Funct. Anal. 279(1), 108505 (2020)

    Article  MathSciNet  Google Scholar 

  8. Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudo-differential operators. Adv. Math. 268, 478–528 (2015)

    Article  MathSciNet  Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam (2006)

  10. Kochubei, A.N.: Distributed order calculus and equation of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  Google Scholar 

  11. Kubica, A., Ryszewska, K.: Decay of solutions to parabolic-type problem with distributed order Caputo derivative. J. Math. Anal. Appl. 465(1), 75–99 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kubica, A., Ryszewska, K.: Fractional diffusion equation with distributed-order Caputo derivative. J. Integral Equ. Appl. 31(2), 195–243 (2019)

    Article  MathSciNet  Google Scholar 

  13. Li, Z., Fujishiro, K., Li, G.S.: Uniqueness in the inversion of distributed orders in ultraslow diffusion equations. J. Comput. Appl. Math. 369, 112564 (2019)

    Article  MathSciNet  Google Scholar 

  14. Li, Z., Luchko, Y., Yamamoto, M.: Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem. Comput. Math. Appl. 73, 1041–1052 (2016)

    Article  MathSciNet  Google Scholar 

  15. Li, Z., Kian, Y., Soccorsi, E.: Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115(1–2), 95–126 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Louis-Rose, C., Warma, M.: Approximate controllability from the exterior of space-time fractional wave equations. Appl. Math. Optim. 83, 207–250 (2021)

    Article  MathSciNet  Google Scholar 

  17. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12(4), 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Meerschaert, M.M., Scheffler, H.P.: Stochastic model for ultraslow diffusion. Stoch. Proc. Appl. 116, 1215–1235 (2006)

    Article  MathSciNet  Google Scholar 

  19. Peng, L., Zhou, Y., He, J.W.: The well-posedness analysis of distributed order fractional diffusion problems on \({\mathbb{R}}^N\). Monatshefte für Mathematik (2021). https://doi.org/10.1007/s00605-021-01631-8

    Article  Google Scholar 

  20. Peng, L., Zhou, Y., Ahmad, B., Alsaedi, A.: The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces. Chaos Solitons Fractals 102, 218–228 (2017)

    Article  MathSciNet  Google Scholar 

  21. Peng, L., Zhou, Y., Ahmad, B.: The well-posedness for fractional nonlinear Schrödinger equations. Comput. Math. Appl. 77, 1998–2005 (2019)

    Article  MathSciNet  Google Scholar 

  22. Prüss, J.: Evolutionary Integral Equations and Applications, Monographs in Mathematics, vol. 87. Birkhäuser Verlag, Basel (1993)

    Book  Google Scholar 

  23. Rundell, W., Zhang, Z.D.: Fractional diffusion: recovering the distributed fractional derivative from overposed data. Inverse Probl. 33, 035008 (2017)

    Article  MathSciNet  Google Scholar 

  24. Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinb. Sect. A 144(4), 831–855 (2014)

    Article  MathSciNet  Google Scholar 

  25. Sun, C.L., Liu, J.J.: An inverse source problem for distributed order time-fractional diffusion equation. Inverse Probl. 36(5), 055008 (2020)

    Article  MathSciNet  Google Scholar 

  26. Warma, M.: Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57(3), 2037–2063 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhou, Y., He, J.W., Ahmad, B., Tuan, N.H.: Existence and regularity results of a backward problem for fractional diffusion equations. Math. Methods Appl. Sci. 42, 6775–6790 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Project supported by National Natural Science Foundation of China (12001462, 12071396) and the General Project of Hunan Provincial Education Department of China (21C0083).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Zhou, Y. The Analysis of Approximate Controllability for Distributed Order Fractional Diffusion Problems. Appl Math Optim 86, 22 (2022). https://doi.org/10.1007/s00245-022-09886-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09886-9

Keywords

Mathematics Subject Classification

Navigation