Skip to main content
Log in

Mixed Linear Quadratic Stochastic Differential Leader-Follower Game with Input Constraint

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper investigates a mixed leader-follower differential games problem, where the model involves two players with the same hierarchy in decision making and each player has two controls which act as a leader and a follower, respectively. Specifically, we solve a follower problem with unconstrained controls and obtain the corresponding Nash equilibrium. Then a leader problem with constrained controls is tackled and a pair of optimal constrained controls are presented by a projection mapping. Furthermore, the control weights are allowed to be singular. In this case, we first investigate the uniform convexity of the cost functional whose corresponding states are fully-coupled forward-backward stochastic differential equation. After that, the minimizing sequence of solutions with non-degenerate control weights are constructed to study the weak convergence of the corresponding cost functionals. Finally, two examples are addressed for non-singular and singular cases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee, S., Roy, A.: Linear Algebra and Matrix Analysis for Statistics. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  2. Başar, T., Bensoussan, A., Sethi, S.P.: Differential games with mixed leadership: the open-loop solution. Appl. Math. Comput. 217(3), 972–979 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  4. Bensoussan, A., Chen, S., Chutani, A., Sethi, S.P., Siu, C.C., Yam, S.C.P.: Feedback Stackelberg-Nash equilibria in mixed leadership games with an application to cooperative advertising. SIAM J. Financ. Math. 57, 3413–3444 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Bensoussan, A., Wong, K., Yam, S., Yung, S.: Time-consistent portfolio selection under short-selling prohibition: from discrete to continuous setting. SIAM J. Financ. Math. 5, 153–190 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chen, C.I., Cruz, J.B.: Stackelberg solution for two-person games with biased information patterns. IEEE Trans. Automat. Contr. 17(6), 791–798 (1972)

    Article  Google Scholar 

  7. Chen, L., Shen, Y.: On a new paradigm of optimal reinsurance: a stochastic Stackelberg differential game between an insurer and a reinsurer. ASTIN Bull. 48(2), 905–960 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chen, L., Shen, Y.: Stochastic Stackelberg differential reinsurance games under time-inconsistent mean-varinance framework. Insur. Math. Econ. 88, 120–137 (2019)

    Article  Google Scholar 

  9. Chen, X., Zhou, X.: Stochastic linear quadratic control with conic control constraints on an infinite time horizon. SIAM J. Control. Optim. 43, 1120–1150 (2004)

    Article  MathSciNet  Google Scholar 

  10. DeMarzo, P.M., Kaniel, R., Kremer, I.: Relative wealth concerns and financial bubbles. Rev. Financ. Stud. 21(1), 19–50 (2008)

    Article  Google Scholar 

  11. Espinosa, G., Touzi, N.: Optimal investment under relative performance concerns. Math. Financ. 25(2), 221–257 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hu, Y., Huang, J., Li, X.: Linear quadratic mean field game with control input constraint. ESAIM Control Optim. Calc. Var. 24, 901–919 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hu, Y., Huang, J., Nie, T.: Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control. Optim. 54(4), 2835–2877 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hu, Y., Imkeller, P., Müller, M.: Utility maximization in incomplete markets. Ann. Appl. Probab. 15(3), 1691–1712 (2005)

    Article  MathSciNet  Google Scholar 

  15. Hu, Y., Zhou, X.Y.: Constrained stochastic lq control with random coefficients, and application to portfolio selection. SIAM J. Control. Optim. 44(2), 444–466 (2005)

    Article  MathSciNet  Google Scholar 

  16. Huang, J., Wang, B., Xie, T.: Social optima in leader-follower mean field linear quadratic control. ESAIM Control Optim. Calc. Var. (2020). https://doi.org/10.1051/cocv/2020056

  17. El, Karoui N., Rouge, R.: Pricing via utility maximization and entropy. Math. Finance 10(2), 259–276 (2000)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Zhou, X.Y., Lim, A.: Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Control. Optim. 40(5), 1540–1555 (2002)

    Article  MathSciNet  Google Scholar 

  19. Lin, Y.N., Jiang, X.S., Zhang, W.H.: An open-loop Stackelberg strategy for the linear quadratic mean-field stochastic differential game. IEEE Trans. Automat. Contr. 64, 97–110 (2019)

    Article  MathSciNet  Google Scholar 

  20. Ma, J., Yong, J.: Forward-Backward Stochastic Differential Equations and Their Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  21. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Başar, T.: Dependable demand response management in the smart grid: a Stackelberg game approach. IEEE Trans. Smart Grid. 4(1), 120–132 (2013)

    Article  Google Scholar 

  22. Moon, J., Başar, T.: Linear quadratic mean field Stackelberg differential games. Automatica 97, 200–213 (2018)

    Article  MathSciNet  Google Scholar 

  23. Shi, J., Wang, G., Xiong, J.: Leader-follwer Sotchastic differential game with asymmetric inforamtion and application. Automatica 63, 60–73 (2016)

    Article  Google Scholar 

  24. Simaan, M., Cruz, J.: A Stackelberg solution for games with many players. IEEE Trans. Automat. Contr. 18(3), 322–324 (1973)

    Article  MathSciNet  Google Scholar 

  25. Sun, J., Li, X., Yong, J.: Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control. Optim. 54(5), 2274–2308 (2016)

    Article  MathSciNet  Google Scholar 

  26. Sun, J., Yong, J.: Linear quadratic stochastic differential games: open-loop and closed-loop saddle points. SIAM J. Control. Optim. 52(6), 4082–4121 (2014)

    Article  MathSciNet  Google Scholar 

  27. Sun, J., Yong, J.: Linear quadratic stochastic two-person nonzero-sum differential games: open-loop and closed-loop Nash equilibria. Stoch. Process. Their Appl. 129, 381–418 (2019)

    Article  MathSciNet  Google Scholar 

  28. von Stackelberg, H.: The Theory of the Market Economy. Oxford University, New York (1952)

    Google Scholar 

  29. Wang, B., Zhang, J.: Hierarchical mean field games for multiagent systems with tracking-type costs: distributed \(\varepsilon \)-Stackelberg equilibria. IEEE Trans. Automat. Contr. 59(8), 2241–2247 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wen, J., Li, X., Xiong, J.: Weak closed-loop solvability of stochastic linear quadratic optimal control problems of Markovian regime switching system. Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09653-8

  31. Wu, Z.: Forward-backward stochastic differential equations, linear quadratic stochastic optimal control and nonzero sum differential games. J. Syst. Sci. Complex. 18(2), 179–192 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Yong, J.: A leader-follower stochastic linear quadratic differential game. SIAM J. Control. Optim. 41(4), 1015–1041 (2002)

    Article  MathSciNet  Google Scholar 

  33. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    Book  Google Scholar 

  34. Yu, Z.: Linear-quadratic optimal control and nonzero-sum differential game of forward-backward stochastic system. Asian J. Control 14(1), 173–185 (2012)

    Article  MathSciNet  Google Scholar 

  35. Zhang, J.: Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer, New York (2017)

    Book  Google Scholar 

  36. Zhou, X.Y., Duan, L.: Continuous-time mean-variance portfolio selection: a stochastic lq framework. Appl. Math. Optim. 42(1), 19–33 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and two anonymous referees for their very extensive and constructive suggestions that helped to improve this paper considerably. Xinwei Feng’s work is supported by National Natural Science Foundation of China (No. 12001317), Shandong Provincial Natural Science Foundation (No. ZR2020QA019) and QILU Young Scholars Program of Shandong University; Tinghan Xie and Jianhui Huang’s work are supported by RGC 153005/14P, 153275/16P, P0030808, P0008686, P0031044; the authors also acknowledge the support from The PolyU-SDU Joint Research Centre on Financial Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Feng, X. & Huang, J. Mixed Linear Quadratic Stochastic Differential Leader-Follower Game with Input Constraint. Appl Math Optim 84 (Suppl 1), 215–251 (2021). https://doi.org/10.1007/s00245-021-09767-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09767-7

Keywords

Mathematics Subject Classification

Navigation