Skip to main content
Log in

Uniform Stabilization of Navier–Stokes Equations in Critical \(L^q\)-Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider 2- or 3-dimensional incompressible Navier–Stokes equations defined on a bounded domain \(\varOmega \), with no-slip boundary conditions and subject to an external force, assumed to cause instability. We then seek to uniformly stabilize such N–S system, in the vicinity of an unstable equilibrium solution, in critical \(L^q\)-based Sobolev and Besov spaces, by finite dimensional feedback controls. These spaces are ‘close’ to \(L^3(\varOmega )\) for \(d=3\). This functional setting is significant. In fact, in the case of the uncontrolled N–S dynamics, extensive research efforts have recently lead to the space \(L^3(\mathbb {R}^3)\) as being a critical space for the issue of well-posedness in the full space. Thus, our present work manages to solve the stated uniform stabilization problem for the controlled N–S dynamics in a correspondingly related function space setting. In this paper, the feedback controls are localized on an arbitrarily small open interior subdomain \(\omega \) of \(\varOmega \). In addition to providing a solution of the uniform stabilization problem in such critical function space setting, this paper manages also to much improve and simplify, at both the conceptual and computational level, the solution given in the more restrictive Hilbert space setting in the literature. Moreover, such treatment sets the foundation for the authors’ final goal in a subsequent paper. Based critically on said low functional level where compatibility conditions are not recognized, the subsequent paper solves in the affirmative a presently open problem: whether uniform stabilization by localized tangential boundary feedback controls, which—in addition—are finite dimensional, is also possible in dim \(\varOmega = 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A.: Sobolev Spaces, p. 268. Academic Press, New York (1975)

    Google Scholar 

  2. Amann, H.: Linear and Quasilinear Parabolic Problems: Abstract Linear Theory, vol. 1, p. 338. Birkhauser, Basel (1995)

    MATH  Google Scholar 

  3. Amann, H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Amrouche, C., Rodriguez-Bellido, M.A.: Stationary Stokes, Oseen and Navier-Stokes equations with singular data. Arch Ration. Mech. Anal. 199, 597–651 (2011). https://doi.org/10.1007/s00205-010-0340-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Balakrishnan, A.V.: Applied Functional Analysis. Applications of Mathematics Series, 2nd edn, p. 369. Springer, New York (1981)

    Google Scholar 

  6. Barbu, V.: Stabilization of Navier-Stokes Flows, p. 276. Springer, New York (2011)

    MATH  Google Scholar 

  7. Barbu, V., Triggiani, R.: Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. 53, 1443–1494 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Barbu, V., Lasiecka, I., Triggiani, R.: Tangential boundary stabilization of Navier-Stokes equations. Mem. Am. Math Soc. 181, 128 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Barbu, V., Lasiecka, I., Triggiani, R.: Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers. Nonlinear Anal. 64, 2704–2746 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Barbu, V., Lasiecka, I., Triggiani, R.: Local Exponential Stabilization Strategies of the Navier-Stokes Equations, \(d = 2,3\) via Feedback Stabilization of its Linearization, Control of Coupled Partial Differential Equations. ISNM, vol. 155, pp. 13–46. Birkhauser, Basel (2007)

    MATH  Google Scholar 

  11. Chen, C.T.: Linear Systems Theory and Design, p. 334. Oxford University Press, New York (1984)

    Google Scholar 

  12. Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics, 1st edn, p. 190. University of Chicago Press, Chicago (1980)

    Google Scholar 

  13. Deuring, P.: The Stokes resolvent in 3D domains with conical boundary points: nonregularity in \(L^p\)-spaces. Adv. Differ. Equ. 6(2), 175–228 (2001)

    MATH  Google Scholar 

  14. Deuring, P., Varnhorn, W.: On Oseen resolvent estimates. Differ. Integr. Equ. 23(11/12), 1139–1149 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Dore, G.: Maximal regularity in \(L^p\) spaces for an abstract Cauchy problem. Adv. Differ. Equ. 5(1–3), 293–322 (2000)

    MATH  Google Scholar 

  16. Escauriaza, L., Seregin, G., Šverák, V.: \(L_{3,\infty }\)-Solutions of Navier-Stokes Equations and Backward Uniqueness Mathematical Subject Classification: 35K, 76D. American Mathematical Society, Providence (1991)

    Google Scholar 

  17. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers of Sobolev-Besov spaces and Poisson’s equations for the Laplacian for the Lipschitz domains. J. Funct. Anal. 159(2), 323–368 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Foias, C., Temam, R.: Determination of the solution of the Navier-Stokes equations by a set of nodal volumes. Math. Comput. 43(167), 117–133 (1984)

    MATH  Google Scholar 

  19. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Nonlinear Steady Problems, vol. 1, p. 465. Springer, New York (1994)

    Google Scholar 

  20. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Linearized Steady Problems, vol. 2, p. 323. Springer, New York (1994)

    MATH  Google Scholar 

  21. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer, New York (2011)

    MATH  Google Scholar 

  22. Gallagher, I., Koch, G.S., Planchon, F.: A profile decomposition approach to the \(L^{\infty }_t (L^3_x)\) Navier-Stokes regularity criterion. Math. Ann. 355(4), 1527–1559 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Geissert, M., Götze, K., Hieber, M.: \({L}_p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365, 1393–1439 (2013)

    MATH  Google Scholar 

  24. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in \(L_r\) spaces. Math. Z. 178(3), 279–329 (1981)

    MATH  Google Scholar 

  25. Giga, Y.: Domains of fractional powers of the Stokes operator in \(L_r\) spaces. Arch. Rational Mech. Anal. 89(3), 251–265 (1985)

    MathSciNet  MATH  Google Scholar 

  26. Hieber, M., Saal, J.: The Stokes Equation in the \(L^p\)-Setting: Well Posedness and Regularity Properties Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1–88. Springer, Cham (2016)

    Google Scholar 

  27. Jia, H., Šverák, V.: Minimal \(L^3\)-initial data for potential Navier-Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Jones Don, A., Titi, E.S.: Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations. Indiana Univ. Math. J. 42(3), 875–887 (1993)

    MathSciNet  MATH  Google Scholar 

  29. Kato, T.: Perturbation Theory of Linear Operators, p. 623. Springer, Berlin (1966)

    Google Scholar 

  30. Kesavan, S.: Topics in Functional Analysis and Applications, p. 267. New Age International Publisher, New Delhi (1989)

    MATH  Google Scholar 

  31. Kunstmann, P.C., Weis, L.: Maximal \(L^p\)-Regularity for Parabolic Equations, Fourier Multiplier Theorems and \(H^{\infty }\)-Functional Calculus Functional Analytic Methods for Evolution Equations. Lecture Notes in Mathematics, vol. 1855, pp. 65–311. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  33. Lasiecka, I., Triggiani, R.: Uniform stabilization with arbitrary decay rates of the Oseen equation by finite-dimensional tangential localized interior and boundary controls. In: Semigroups of Operators—Theory and Applications, pp. 125–154 (2015)

  34. Lasiecka, I., Triggiani, R.: Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers. Nonlinear Anal. 121, 424–446 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Lasiecka, I., Priyasad, B., Triggiani, R.: Stabilizing turbulent 3D Navier-Stokes equations by finitely many localized tangential boundary feedback controls (submitted)

  36. Leray, J.: Sur le mouvement d’un liquide visquex emplissent l’espace. Acta Math. J. 63, 193–248 (1934)

    MATH  Google Scholar 

  37. Lions, J.L.: Quelques Methodes de Resolutions des Problemes aux Limites Non Lineaire. Dunod, Paris (1969)

    MATH  Google Scholar 

  38. Maslenniskova, V., Bogovskii, M.: Elliptic boundary values in unbounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis. Milano 56, 125–138 (1986)

    MathSciNet  Google Scholar 

  39. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    MATH  Google Scholar 

  40. Prüss, J., Simonett, G.: Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics, p. 105. Birkhüuser, Basel (2016)

    MATH  Google Scholar 

  41. Rusin, W., Sverak, V.: Minimal initial data for potential Navier-Stokes singularities. arxiv:0911.0500

  42. Saal, J.: Maximal regularity for the Stokes system on non-cylindrical space-time domains. J. Math. Soc. Jpn. 58(3), 617–641 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Sadosky, C.: Interpolation of Operators and Singular Integrals, p. 375. Marcel Dekker, New York (1979)

    MATH  Google Scholar 

  44. Shen, Z.: Resolvent estimates in \(L^p\) for the Stokes operator in Lipschitz domains. Arch. Rational Mech. Anal. 205, 395–424 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Shibata, Y., Shimizu, S.: On the \(L^p-L^q\) maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. Adv. Stud. Pure Math. 47, 347–362 (2007)

    Google Scholar 

  46. Schneider, C.: Traces of Besov and Triebel-Lizorkin spaces on domains. Math. Nach. 284(5–6), 572–586 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 9, 187 (1962). https://doi.org/10.1007/BF00253344

    Article  MathSciNet  MATH  Google Scholar 

  48. Serrin, J.: The Initial Value Problem for the Navier-Stokes Equations, Nonlinear Problems (Proc. Sympos., Madison, WI, 1962), pp. 69–98. University of Wisconsin Press, Madison (1963)

    Google Scholar 

  49. Solonnikov, V.A.: Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations. Am. Math. Soc. Transl. 75, 1–116 (1968)

    MATH  Google Scholar 

  50. Solonnikov, V.A.: Estimates for solutions of non-stationary Navier-Stokes equations. J. Sov. Math. 8, 467–529 (1977)

    MATH  Google Scholar 

  51. Solonnikov, V.A.: On the solvability of boundary and initial-boundary value problems for the Navier-Stokes system in domains with noncompact boundaries. Pac. J. Math. 93(2), 443–458 (1981)

    MathSciNet  MATH  Google Scholar 

  52. Solonnikov, V.A.: On Schauder estimates for the evolution generalized Stokes problem. Ann. Univ. Ferrara 53, 137–172 (1996)

    MATH  Google Scholar 

  53. Solonnikov, V.A.: \(L^p\)-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. J. Math. Sci. 105(5), 2448–2484 (2001)

    MathSciNet  Google Scholar 

  54. Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Modern Birkhauser Classics, p. 377. Springer, New York (2001)

    Google Scholar 

  55. Taylor, A.E., Lay, D.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)

    MATH  Google Scholar 

  56. Temam, R.: Navier-Stokes Equations, p. 517. North Holland, Amsterdam (1979)

    MATH  Google Scholar 

  57. Triggiani, R.: On the stabilizability problem of Banach spaces. J. Math. Anal. Appl. 55, 303–403 (1975)

    MathSciNet  Google Scholar 

  58. Triggiani, R.: Feedback stability of parabolic equations. Appl. Math. Optim. 6, 201–220 (1975)

    MATH  Google Scholar 

  59. Triggiani, R.: Linear independence of boundary traces of eigenfunctions of elliptic and Stokes Operators and applications, invited paper for special issue. Appl. Math. 35(4), 481–512 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Triggiani, R.: Unique continuation of the boundary over-determined Stokes and Oseen eigenproblems. Discret. Contin. Dyn. Syst. S 2(3), 645 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Triggiani, R.: Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation. Nonlinear Anal. 2, 645–678 (2009)

    MathSciNet  MATH  Google Scholar 

  62. Triebel, H.: Interpolation theory, function spaces, differential operators. Bull. Am. Math. Soc. (N.S.) 2(2), 339–345 (1980)

    MathSciNet  Google Scholar 

  63. von Whal, W.: The Equations of Navier-Stokes and Abstract Parabolic Equations. Springer Fachmedien Wiesbaden, Wiesbaden (1985)

    Google Scholar 

  64. Weis, L.: A new approach to maximal Lp-regularity. In: Evolution Equations and Their Applications in Physical and Life Sciences. Lecture Notes Pure and Applied Mathematics, vol 215, pp 195–214. Marcel Dekker, New York (2001)

Download references

Acknowledgements

The research of I.L. and R.T. was partially supported by the National Science Foundation under Grant DMS-1713506. The research of B.P. was partially supported by the ERC advanced grant 668998 (OCLOC) under the EU’s H2020 research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Triggiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

On Helmholtz Decomposition

We return to the Helmholtz decomposition in (1.4), (1.5) and provide additional information.

For \(M \subset L^q(\varOmega ), \quad 1< q < \infty \), we denote the annihilator of M by

$$\begin{aligned} M^{\perp } = \bigg \{ f \in L^{q'}(\varOmega ) : \int _{\varOmega } fg \ d \varOmega = 0, \text { for all } g \in M \bigg \} \end{aligned}$$
(A.1)

where \(q'\) is the dual exponent of \(\displaystyle q: \ {}^{1}\!/_{q} + {}^{1}\!/_{q'} = 1\).

Proposition A.1

[26, Prop. 2.2.2, p. 6], [21, Ex. 16, p. 115], [17] Let \(\varOmega \subset \mathbb {R}^d\) be an open set and let \(1< q < \infty \).

  1. (a)

    The Helmholtz decomposition exists for \(L^q(\varOmega )\) if and only if it exists for \(L^{q'}(\varOmega )\), and we have: (adjoint of \(P_q\)) = \(P^*_q = P_{q'}\) (in particular \(P_2\) is orthogonal), where \(P_q\) is viewed as a bounded operator \(\displaystyle L^q(\varOmega ) \longrightarrow L^q(\varOmega )\), and \(\displaystyle P^*_q = P_{q'}\) as a bounded operator \(\displaystyle L^{q'}(\varOmega ) \longrightarrow L^{q'}(\varOmega ), \ {}^{1}\!/_{q} + {}^{1}\!/_{q'} = 1\).

  2. (b)

    Then, with reference to (1.5)

$$\begin{aligned} \Big [ L^{q}_{\sigma }(\varOmega )\Big ]^{\perp } = G^{q'}(\varOmega ) \text { and } \Big [ G^q(\varOmega ) \Big ]^{\perp } = L^{q'}_{\sigma }(\varOmega ). \end{aligned}$$
(A.2a)

Remark A.1

Throughout the paper we shall use freely that

$$\begin{aligned} \big ( L^{q}_{\sigma }(\varOmega )\big )' = L^{q'}_{\sigma }(\varOmega ), \quad \frac{1}{q} + \frac{1}{q'} = 1. \end{aligned}$$
(A.2b)

Thus can be established as follows. From (1.5) write \(\displaystyle L^{q}_{\sigma }(\varOmega )\) as a factor space \(\displaystyle L^{q}_{\sigma }(\varOmega )= L^q(\varOmega ) / G^q(\varOmega ) \equiv X/M\) so that [55, p. 135].

$$\begin{aligned} \big ( L^{q}_{\sigma }(\varOmega )\big )' = \big ( L^q(\varOmega ) / G^q(\varOmega ) \big )' = \big ( X/M \big )' = M^{\perp } = \Big [ G^q(\varOmega ) \Big ]^{\perp } = L^{q'}_{\sigma }(\varOmega ). \end{aligned}$$
(A.2c)

In the last step, we have invoked (A.2a), which is also established in [21, Lemma 2.1, p. 116]. Similarly

$$\begin{aligned} \big ( G^q(\varOmega ) \big )' = \big ( L^q(\varOmega ) / L^{q}_{\sigma }(\varOmega )\big )' = \Big [ L^{q}_{\sigma }(\varOmega )\Big ]^{\perp } = G^{q'}(\varOmega ). \end{aligned}$$
(A.2d)

Proof of Theorem 1.6: Maximal Regularity of the Oseen Operator \({\mathcal {A}}_q\) on \(L^{q}_{\sigma }(\varOmega )\), \(1< p,q< \infty , T < \infty \)

Part I: (1.46). By (1.41) with \(\psi _0 = 0\)

$$\begin{aligned} \psi (t) = \int _{0}^{t} e^{{\mathcal {A}}_q(t-\tau )} F_{\sigma }(\tau ) d \tau . \end{aligned}$$
(B.1)

where by the statement preceding Theorem 1.4

$$\begin{aligned} \left||e^{{\mathcal {A}}_q(t-\tau )}\right||_{{\mathcal {L}}(L^{q}_{\sigma }(\varOmega ))} \le M e^{b (t - \tau )}, \quad 0 \le \tau \le t \end{aligned}$$
(B.2)

for \(M \ge 1, \ b\) possibly depending on q.

Step 1 We have the following estimate

$$\begin{aligned} \int _{0}^{T} \left||\psi (t)\right||_{L^{q}_{\sigma }(\varOmega )}^p dt \le C_T \int _{0}^{T} \left||F_{\sigma }(t)\right||_{L^{q}_{\sigma }(\varOmega )}^p dt \end{aligned}$$
(B.3)

where the constant \(C_T\) may depend also on pqb. This follows at once from the Young’s inequality for convolutions [43, p. 26]:

$$\begin{aligned} \left||\psi (t)\right||_{L^{q}_{\sigma }(\varOmega )} \le M \int _{0}^{t} e^{b (t - \tau )} \left||F_{\sigma }(\tau )\right||_{L^{q}_{\sigma }(\varOmega )} d \tau \in L^p(0,T), \ T < \infty , \end{aligned}$$

and the convolution of the \(L^p(0,T)\)-function \(\displaystyle \left||F_{\sigma }\right||_{L^{q}_{\sigma }(\varOmega )}\) and the \(\displaystyle L^1(0,T)\)-function \(e^{bt}\) is in \(L^p(0,T)\). More elementary, one can use Hölder inequality with \(\displaystyle {}^{1}\!/_{p} + {}^{1}\!/_{{\tilde{p}}} = 1\) and obtain an explicit constant.

Step 2 Claim: Here we shall next complement (B.3) with the estimate

$$\begin{aligned} \int _{0}^{T} \left||A_q \psi (t)\right||_{L^{q}_{\sigma }(\varOmega )}^p dt \le C \int _{0}^{T} \left||\psi (t)\right||_{L^{q}_{\sigma }(\varOmega )}^p dt + C \int _{0}^{T} \left||F_{\sigma }(t)\right||_{L^{q}_{\sigma }(\varOmega )}^p dt \end{aligned}$$
(B.4)

to be shown below. Using (B.3) in (B.4) then yields

$$\begin{aligned} \int _{0}^{T} \left||A_q \psi (t)\right||_{L^{q}_{\sigma }(\varOmega )}^p dt \le C_T \int _{0}^{T} \left||F_{\sigma }(t)\right||_{L^{q}_{\sigma }(\varOmega )}^p dt. \end{aligned}$$
(B.5)

With respect to (1.41) with \(\psi _0 = 0\), then (B.5) says

$$\begin{aligned} F_{\sigma }\in L^p(0,T; L^{q}_{\sigma }(\varOmega )) \longrightarrow \psi \in L^p(0,T;{\mathcal {D}}(A_q) = {\mathcal {D}}({\mathcal {A}}_q)) \end{aligned}$$
(B.6)

while (1.40) then yields via (B.6)

$$\begin{aligned} F_{\sigma }\in L^p(0,T; L^{q}_{\sigma }(\varOmega )) \longrightarrow \psi _t \in L^p(0,T;L^{q}_{\sigma }(\varOmega )) \end{aligned}$$
(B.7)

continuously. Then, (B.6), (B.7) shows part (i) of Theorem 1.6.

Proof of (B.4):

In this step, with \(\psi _0 = 0\), we shall employ the alternative formula, via (1.42) (\(\nu = 1\), wlog)

$$\begin{aligned} \psi (t) = \int _{0}^{t} e^{-A_q(t-\tau )} (-A_{o,q}) \psi (\tau ) d \tau + \int _{0}^{t} e^{-A_q(t-\tau )} F_{\sigma }(\tau ) d \tau , \end{aligned}$$
(B.8)

where by maximal regularity of the Stokes operator \(-A_q\) on the space \(L^{q}_{\sigma }(\varOmega )\), as asserted in Theorem 1.5.ii, Eq (1.35), we have in particular

$$\begin{aligned} F_{\sigma }\in L^p(0,T; L^{q}_{\sigma }(\varOmega )) \longrightarrow \int _{0}^{t} e^{-A_q(t - \tau )} F_{\sigma }(\tau ) d \tau \in L^p(0,T;{\mathcal {D}}(A_q)) \quad \text {continuously.} \end{aligned}$$
(B.9)

Regarding the first integral term in (B.8) we shall employ the (complex) interpolation formula (1.22), and recall from (1.9) that \({\mathcal {D}}(A_{o,q}) = {\mathcal {D}}(A^{{}^{1}\!/_{2}}_q)\):

$$\begin{aligned} {\mathcal {D}}(A_{o,q}) = {\mathcal {D}}(A^{{}^{1}\!/_{2}}_q) = \left[ {\mathcal {D}}(A_q), L^{q}_{\sigma }(\varOmega )\right] _{{}^{1}\!/_{2}} \end{aligned}$$
(B.10)

so that the interpolation inequality [62, Theorem p 53, Eq. (3)] with \(\theta = {}^{1}\!/_{2}\) yields from (B.10)

$$\begin{aligned} \begin{aligned} \left||a\right||_{{\mathcal {D}}(A_{o,q})} = \left||a\right||_{{\mathcal {D}}\big (A_q^{{}^{1}\!/_{2}} \big )}&\le C \left||a\right||_{{\mathcal {D}}(A_q)}^{{}^{1}\!/_{2}} \left||a\right||_{L^{q}_{\sigma }(\varOmega )}^{{}^{1}\!/_{2}}\\&\le \varepsilon \left||a\right||_{{\mathcal {D}}(A_q)} + C_{\varepsilon } \left||a\right||_{L^{q}_{\sigma }(\varOmega )}. \end{aligned} \end{aligned}$$
(B.11)

\(\Big [\)Since \({\mathcal {D}}(A_q^{{}^{1}\!/_{2}}) = W^{1,q}_0(\varOmega ) \cap L^{q}_{\sigma }(\varOmega )\) by (1.22), then for \(a \in {\mathcal {D}}(A_q) = W^{2,q}(\varOmega ) \cap W^{1,q}_0(\varOmega ) \cap L^{q}_{\sigma }(\varOmega )\), see (1.17), we may as well invoke the interpolation inequality for W-spaces. [1, Theorem 4.13, p. 74]:

$$\begin{aligned} \left||a\right||_{W^{1,q}_0(\varOmega )} \le \varepsilon \left||a\right||_{W^{2,q}(\varOmega )} + C_{\varepsilon } \left||a\right||_{L^{q}_{\sigma }(\varOmega )} \end{aligned}$$

We return to (B.8) and obtain

$$\begin{aligned} A_q \psi (t) = A_q \int _{0}^{t} e^{-A_q(t-\tau )} (-A_{o,q}) \psi (\tau ) d \tau + A_q \int _{0}^{t} e^{-A_q(t-\tau )} F_{\sigma }(\tau ) d \tau . \end{aligned}$$
(B.12)

Hence via the maximal regularity of the uniformly stable Stokes semigroup \(e^{-A_q t}\), Eq. (1.35), (B.11) yields

$$\begin{aligned} \left||A_q \psi \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))}&\le C \Big \{ \left||A_{o,q} \psi \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} + \left||F_{\sigma }\right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \Big \} \end{aligned}$$
(B.13)
$$\begin{aligned} \text {by (B.11)} \quad&\le \varepsilon ' \left||A_q \psi \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} + C_{\varepsilon '} \left||\psi \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \nonumber \\&\quad + C \left||F_{\sigma }\right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \end{aligned}$$
(B.14)

\(\varepsilon ' = \varepsilon C > 0\) arbitrarily small. Hence (B.14) yields

$$\begin{aligned} \left||A_q \psi \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \le \frac{C_{\varepsilon '}}{1-\varepsilon '} \left||\psi \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} + \frac{C}{1-\varepsilon '} \left||F_{\sigma }\right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \end{aligned}$$
(B.15)

and estimate (B.4) of Step 2 is established. Part I of Theorem 1.6 is proved.

Part II: (1.49). For simplicity of notation, we shall write the proof on \(\displaystyle {\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\) i.e. for \(\displaystyle 1< q, p < {}^{2q}\!/_{2q-1}\). The proof on \(\displaystyle \big ( L^{q}_{\sigma }(\varOmega ), {\mathcal {D}}(A_q) \big )_{1-\frac{1}{p},p}\) in the other case \( {}^{2q}\!/_{2q-1} < p\) is exactly the same.

Step 1 Let \(\eta _0 \in {\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\) and consider the s.c. analytic Oseen semigroup \(e^{{\mathcal {A}}_q t}\) on the space \({\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\), as asserted by Theorem 1.4.ii (take \(\nu = 1\) wlog):

$$\begin{aligned} \eta (t) = e^{{\mathcal {A}}_q t} \eta _0, \quad \text {or } \eta _t = {\mathcal {A}}_q \eta = -A_q \eta - A_{o,q} \eta . \end{aligned}$$
(B.16)

Then we can rewrite \(\eta \) as

$$\begin{aligned} \eta (t)&= e^{-A_q t} \eta _0 + \int _{0}^{t} e^{-A_q (t - \tau )}(-A_{o,q})\eta (\tau ) \quad d \tau \end{aligned}$$
(B.17)
$$\begin{aligned} A_q \eta (t)&= A_q e^{-A_q t} \eta _0 + A_q \int _{0}^{t} e^{-A_q (t - \tau )}(-A_{o,q})\eta (\tau ) \quad d \tau . \end{aligned}$$
(B.18)

We estimate, recalling the maximal regularity (1.35), (1.36) as well as the uniform decay (1.25) of the Stokes operator.

$$\begin{aligned} \left||A_q \eta \right||_{L^p(0,T;L^q(\varOmega ))}&\le C \left||\eta _0\right||_{{\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )} + C \left||A_{o,q} \eta \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \end{aligned}$$
(B.19)
$$\begin{aligned}&\le C \left||\eta _0\right||_{{\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )} + \varepsilon {\widetilde{C}} \left||A_q \eta \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))}\nonumber \\&\quad + C_{\varepsilon }\left||\eta \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \end{aligned}$$
(B.20)

after invoking, in the last step, the interpolation inequality (B.11). Thus (B.20) yields via (1.18)

$$\begin{aligned} \left||A_q \eta \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))}&= \left||{\mathcal {A}}_q \eta \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))} \nonumber \\&\le \frac{C}{1 - \varepsilon {\widetilde{C}}} \left||\eta _0\right||_{{\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )} + \frac{C_{\varepsilon }}{1 - \varepsilon {\widetilde{C}}} \left||\eta \right||_{L^p(0,T;L^{q}_{\sigma }(\varOmega ))}. \end{aligned}$$
(B.21)

Step 2 With \(\displaystyle \eta _0 \in {\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\), since \(\displaystyle e^{{\mathcal {A}}_q t}\) generates a s.c (analytic) semigroup on \(\displaystyle {\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\), Theorem 1.4.ii, we have

$$\begin{aligned} \eta (t) = e^{{\mathcal {A}}_qt} \eta _0 \in C \Big (0,T; {\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\Big ) \subset L^p \Big (0,T; {\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\Big ) \subset L^p \big (0,T; L^{q}_{\sigma }(\varOmega )\big ) \end{aligned}$$
(B.22)

continuously, where in the last step, we have recalled that \(\displaystyle {\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )\) is the interpolation between \(\displaystyle L^q(\varOmega )\) and \(\displaystyle W^{2,q}(\varOmega )\), see (1.16b). (B.22) says explicitly

$$\begin{aligned} \left||\eta \right||_{L^p \big (0,T; L^{q}_{\sigma }(\varOmega )) \big )} \le C \left||\eta _0\right||_{{\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )} \end{aligned}$$
(B.23)

Step 3 Substituting (B.23) in (B.21) yields

$$\begin{aligned} \left||A_q \eta \right||_{L^p \big (0,T; L^{q}_{\sigma }(\varOmega )\big )} \le C \left||\eta _0\right||_{{\widetilde{B}}^{2-{}^{2}\!/_{p}}_{q,p}(\varOmega )} \end{aligned}$$
(B.24)

and (1.49) is established, from which (1.50) follows at once. Thus Theorem 1.6 is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasiecka, I., Priyasad, B. & Triggiani, R. Uniform Stabilization of Navier–Stokes Equations in Critical \(L^q\)-Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls. Appl Math Optim 83, 1765–1829 (2021). https://doi.org/10.1007/s00245-019-09607-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09607-9

Keywords

Navigation