Skip to main content
Log in

Long-Time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We investigate the long-time dynamics and optimal control problem of a thermodynamically consistent diffuse interface model that describes the growth of a tumor in presence of a nutrient and surrounded by host tissues. The state system consists of a Cahn–Hilliard type equation for the tumor cell fraction and a reaction–diffusion equation for the nutrient. The possible medication that serves to eliminate tumor cells is in terms of drugs and is introduced into the system through the nutrient. In this setting, the control variable acts as an external source in the nutrient equation. First, we consider the problem of “long-time treatment” under a suitable given mass source and prove the convergence of any global solution to a single equilibrium as \(t\rightarrow +\infty \). Second, we consider the “finite-time treatment” that corresponds to an optimal control problem. Here we allow the objective cost functional to depend on a free time variable, which represents the unknown treatment time to be optimized. We prove the existence of an optimal control and obtain first order necessary optimality conditions for both the drug concentration and the treatment time. One of the main aim of the control problem is to realize in the best possible way a desired final distribution of the tumor cells, which is expressed by the target function \(\phi _\Omega \). By establishing the Lyapunov stability of certain equilibria of the state system (without external source), we show that \(\phi _{\Omega }\) can be taken as a stable configuration, so that the tumor will not grow again once the finite-time treatment is completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agosti, A., Antonietti, P.F., Ciarletta, P., Grasselli, M., Verani, M.: A Cahn–Hilliard-type equation with application to tumor growth dynamics. Math. Methods Appl. Sci. 40, 7598–7626 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill Book Co., Inc., New York (1953)

    MATH  Google Scholar 

  4. Ben Hassen, I.: Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations. Asymptot. Anal. 69, 31–44 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bosia, S., Conti, M., Grasselli, M.: On the Cahn–Hilliard–Brinkman system. Commun. Math. Sci. 13, 1541–1567 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Cavaterra, C., Rocca, E., Wu, H.: Optimal boundary control of a simplified Ericksen–Leslie system for nematic liquid crystal flows in 2D. Arch. Ration. Mech. Anal. 224(3), 1037–1086 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    MATH  Google Scholar 

  8. Chill, R., Jendoubi, M.A.: Convergence to steady states in asymptotically autonomous semilinear evolution equations. Nonlinear Anal. 53, 1017–1039 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control Optim. 53, 2696–2721 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Ann. Acad. Rom. Sci. Math. Appl. 7, 41–66 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn–Hilliard type phase field model related to tumor growth. Discret Contin. Dyn. Syst. 35, 2423–2442 (2015)

    MATH  Google Scholar 

  12. Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Sliding mode control for phase field system related to tumor growth. Appl. Math. Optim. (2017). https://doi.org/10.1007/s00245-017-9451-z

    Article  MATH  Google Scholar 

  13. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Vanishing viscosities and error estimate for a Cahn–Hilliard type phase-field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93–108 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discret. Contin. Dyn. Syst. Ser. S 10, 37–54 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30, 2518–2546 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 73, 195–225 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4, 311–325 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Colli, P., Sprekels, J.: Optimal control of an Allen–Cahn equation with singular potentials and dynamic boundary condition. SIAM J. Control Optim. 53(1), 213–234 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Cristini, V., Lowengrub, J.S.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  20. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58, 723–763 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.: Analysis of a diffuse interface model for multispecies tumor growth. Nonlinearity 30, 1639–1658 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Della Porta, F., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard–Hele–Shaw system with logarithmic potential. Nonlinearity 31, 4851–4881 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Ebenbeck, M., Garcke, H.: On a Cahn–Hilliard–Brinkman model for tumour growth and its singular limits, preprint arXiv:1811.06699v1 (2018)

  24. Feireisl, E., Simondon, F.: Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dynam. Differ. Equ. 12(3), 647–673 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215–243 (2015)

    MATH  Google Scholar 

  26. Frigeri, S., Grasselli, M., Sprekels, J.: Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential, Appl. Math. Optim., (2018), published online, https://doi.org/10.1007/s00245-018-9524-7.

  27. Frigeri, S., Lam, K.F., Rocca, E., Schimperna, G.: On a multi-species Cahn–Hilliard–Darcy tumor growth model with singular potentials. Commun Math Sci. 16, 821–856 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in 2D. SIAM J. Control Optim. 54, 221–250 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Gal, C.G., Wu, H.: Asymptotic behavior of a Cahn–Hilliard equation with Wentzell boundary conditions and mass conservation. Discret. Contin. Dyn. Syst. 22, 1041–1063 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Garcke, H., Lam, K.F.: Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1, 318–360 (2016)

    MATH  Google Scholar 

  31. Garcke, H., Lam, K.F.: Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28, 284–316 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Garcke, H., Lam, K.F., Nürnberg, R., Sitka, E.: A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28, 525–577 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Garcke, H., Lam, K.F., Rocca, E.: Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. (2017). https://doi.org/10.1007/s00245-017-9414-4

    Article  MATH  Google Scholar 

  34. Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26, 1095–1148 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Giorgini, A., Grasselli, M., Wu, H.: On the Cahn–Hilliard–Hele–Shaw system with singular potential. Ann. Inst. Henri Poincaré C 35(4), 1079–1118 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Giorgini, A., Grasselli, M., Miranville, A.: The Cahn–Hilliard–Oono equation with singular potential. Math. Models Methods Appl. Sci. 27, 2485–2510 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Grasselli, M., Wu, H., Zheng, S.: Asymptotic behavior of a non-isothermal Ginzburg–Landau model. Quart. Appl. Math. 66(4), 743–770 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Hawkins-Daarud, A., van der Zee, K.G., Oden, J.T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28, 3–24 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Hilhorst, D., Kampmann, J., Nguyen, T.N., van der Zee, K.G.: Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25, 1011–1043 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Hintermüller, M., Wegner, D.: Distributed optimal control of the Cahn–Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50, 388–418 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Hintermüller, M., Wegner, D.: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system. SIAM J. Control Optim. 52, 747–772 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Huang, S.-Z., Takáč, P.: Convergence in gradient-like systems which are asymptotically autonomous and analytic. Nonlinear Anal. 46, 675–698 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Jiang, J., Wu, H., Zheng, S.: Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259, 3032–3077 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Liu, C., Wu, H.: An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis, Arch. Rational Mech. Anal., to appear, (2019), https://doi.org/10.1007/s00205-019-01356-x.

  45. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R91 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Lowengrub, J.S., Titi, E., Zhao, K.: Analysis of a mixture model of tumor growth. Eur. J. Appl. Math. 24, 691–734 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Melchionna, S., Rocca, E.: Varifold solutions of a sharp interface limit of a diffuse interface model for tumor growth. Interfaces Free Bound. 19, 571–590 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Miranville, A.: Asymptotic behavior of the Cahn–Hilliard–Oono equation. J. Appl. Anal. Comput. 1, 523–536 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Miranville, A., Rocca, E., Schimperna, G.: On the long time behavior of a tumor growth model, preprint arXiv:1810.12239 (2018), 1–19

  50. Oden, J.T., Hawkins, A., Prudhomme, S.: General diffuse-interface theories and an approach to predictive tumor growth modeling. Math. Models Methods Appl. Sci. 20(3), 477–517 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Oden, J.T., Prudencio, E.E., Hawkins-Daarud, A.: Selection and assessment of phenomenological models of tumor growth. Math. Models Methods Appl. Sci. 23(7), 1309–1338 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Rocca, E., Scala, R.: A rigorous sharp interface limit of a diffuse interface model related to tumor growth. J. Nonlinear Sci. 27, 847–872 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal convective Cahn–Hilliard equation by the velocity in three dimensions. SIAM J. Control Optim. 53, 1654–1680 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Rybka, P., Hoffmann, K.-H.: Convergence of solutions to Cahn–Hilliard equation. Commun. Partial Differ. Equ. 24(5&6), 1055–1077 (1999)

    MathSciNet  MATH  Google Scholar 

  55. Simon, L.: Asymptotics for a class of nonlinear evolution equation with applications to geometric problems. Ann. Math. 118, 525–571 (1983)

    MathSciNet  MATH  Google Scholar 

  56. Simon, J.: Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  57. Sprekels, J., Wu, H.: Optimal distributed control of a Cahn–Hilliard–Darcy system with mass sources, Appl. Math. Optim., to appear, (2019), https://doi.org/10.1007/s00245-019-09555-4

  58. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Grad. Stud. in Math., Vol. 112, AMS, Providence, RI (2010)

  59. Wang, X., Wu, H.: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asymptot. Anal. 78(4), 217–245 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Wang, X., Zhang, Z.: Well-posedness of the Hele-Shaw–Cahn–Hilliard system. Ann. Inst. Henri Poincaré C 30(3), 367–384 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn–Hilliard models with applications to diffuse-interface tumor-growth models. Int. J. Numer. Meth. Biomed. Eng. 30, 180–203 (2014)

    MathSciNet  Google Scholar 

  62. Wu, H.: Convergence to equilibrium for a Cahn–Hilliard model with the Wentzell boundary condition. Asymptot. Anal. 54(1&2), 71–92 (2007)

    MathSciNet  MATH  Google Scholar 

  63. Wu, H., Grasselli, M., Zheng, S.: Convergence to equilibrium for a parabolic–hyperbolic phase-field system with Neumann boundary conditions. Math. Models Methods Appl. Sci. 17(1), 125–153 (2007)

    MathSciNet  MATH  Google Scholar 

  64. Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions. J. Differ. Equ. 204(2), 511–531 (2004)

    MathSciNet  MATH  Google Scholar 

  65. Zhang, Z.: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions. Commun. Pure Appl. Anal. 4(3), 683–693 (2005)

    MathSciNet  MATH  Google Scholar 

  66. Zhao, X., Liu, C.: Optimal control of the convective Cahn–Hilliard equation. Appl. Anal. 92, 1028–1045 (2013)

    MathSciNet  MATH  Google Scholar 

  67. Zhao, X., Liu, C.: Optimal control for the convective Cahn–Hilliard equation in 2D case. Appl. Math. Optim. 70, 61–82 (2014)

    MathSciNet  MATH  Google Scholar 

  68. Zheng, S.: Nonlinear Evolution Equations. Pitman series Monographs and Survey in Pure and Applied Mathematics, vol. 133. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading and helpful comments. C. Cavaterra and E. Rocca were partially supported by GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica). This research has been performed in the framework of the project Fondazione Cariplo-Regione Lombardia MEGAsTAR “Matematica d’Eccellenza in biologia ed ingegneria come acceleratore di una nuova strateGia per l’ATtRattività dell’ateneo pavese”. This research was also supported by the Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022) - Dept. of Mathematics “F. Casorati”, University of Pavia. H. Wu was partially supported by NNSFC Grant No. 11631011 and the Shanghai Center for Mathematical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(m\in {\mathbb {R}}\) be a given constant. We consider the following nonlocal elliptic boundary value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}\displaystyle {-\Delta \phi +F'(\phi )=m-|\Omega |^{-1}\int _\Omega \phi \mathrm{{d}}x, \quad \text {in}\ \Omega ,}\\ &{}\partial _\nu \phi =0,\qquad \qquad \qquad \qquad \qquad \qquad \quad \qquad \;\text {on}\ \partial \Omega .\\ \end{array}\right. } \end{aligned}$$
(6.1)

Problem (6.1) can be associated with the following functional

$$\begin{aligned} \Upsilon (\phi ) = \int _{\Omega } \left( \frac{1}{2} |\nabla \phi |^2 + F(\phi )\right) \mathrm{{d}}x+ \frac{1}{2}|\Omega |\left( m-|\Omega |^{-1}\int _\Omega \phi \mathrm{{d}}x\right) ^2,\quad \forall \, \phi \in H^1(\Omega ). \end{aligned}$$
(6.2)

The following result has been obtained in [63, Lemma 3.1, Lemma 3.2].

Lemma 6.1

Let assumption (F1) be satisfied.

  1. (1)

    Suppose that \(\psi \in H^2_N(\Omega )\) is a (strong) solution to problem (6.1). Then \(\psi \) is a critical point of the functional \(\Upsilon (\phi )\) in \(H^1(\Omega )\). Conversely, if \(\psi \) is a critical point of the functional \(\Upsilon (\phi )\) in \(H^1(\Omega )\), then \(\psi \in H^2_N(\Omega )\) and it is a strong solution to problem (6.1).

  2. (2)

    The functional \(\Upsilon (\phi )\) has at least one minimizer \(\psi \in H^1(\Omega )\) such that

    $$\begin{aligned} \Upsilon (\psi )= \displaystyle {\inf _{\phi \in H^1(\Omega )}}\Upsilon (\phi ). \end{aligned}$$
    (6.3)

Remark 6.1

By the elliptic regularity theory and a bootstrap argument, the minimizer \(\psi \) is indeed a classical solution such that \(\psi \in C^\infty ({\overline{\Omega }})\), provided that the domain boundary \(\partial \Omega \) and the function F are smooth.

Associated with problem (6.1), the following Łojasiewicz–Simon type inequality has been proven in [63, Lemma 4.1] (see [65, Lemma 2.2] for a slightly weaker version).

Lemma 6.2

Let (F1) and (F2) be satisfied. Suppose that \(\psi \) is a critical point of \(\Upsilon (\phi )\) in \(H^1(\Omega )\). Then there exist constants \(\theta \in (0,\frac{1}{2})\) and \(\beta >0\), depending on \(\psi \), m and \(\Omega \), such that, for any \(\phi \in H^1(\Omega )\) with \(\Vert \phi -\psi \Vert _{H^1(\Omega )}< \beta \), it holds

$$\begin{aligned} \left\| - \Delta \phi + F'(\phi )-\left( m - |\Omega |^{-1}\int _\Omega \phi \mathrm{{d}}x\right) \right\| _{(H^1(\Omega ))'} \ \ge \ | \Upsilon (\phi ) -\Upsilon (\psi )|^{1-\theta }. \end{aligned}$$
(6.4)

Now we are in a position to prove the Łojasiewicz–Simon type inequality (3.38) stated in Lemma 3.1, which plays a crucial role in the study of long-time behavior of problem (1.1)–(1.5).

Proof of Lemma 3.1

In Lemma 6.2, we take \(m=m_\infty \) (see (3.35)) and \(\psi =\phi _\infty \). Then it follows from (3.3)–(3.5) and (3.35) that \(\phi _\infty \) satisfies the reduced elliptic problem (6.1). Hence, according to Lemma 6.1, we see that it is a critical point of \(\Upsilon (\phi )\) (cf. (6.2) with \(m=m_\infty \)). As a consequence, Lemma 6.2 applies with constants \(\theta \in (0, \frac{1}{2})\), \(\beta >0\) depending on \(\phi _\infty \), \(m_\infty \) and \(\Omega \). On the other hand, for any \(\phi \in H^2_N(\Omega )\) we set

$$\begin{aligned} \mu =-\Delta \phi +F'(\phi ) \end{aligned}$$

and then using integration by parts, we get

$$\begin{aligned} \int _\Omega \mu \mathrm{{d}}x=\int _\Omega F'(\phi ) \mathrm{{d}}x. \end{aligned}$$

From the Łojasiewicz–Simon inequality (6.4) (applying to \(\psi =\phi _\infty )\), Poincaré’s inequality and (3.37), we deduce that

$$\begin{aligned}&|\Upsilon (\phi ) -\Upsilon (\phi _\infty ) |^{1-\theta } \nonumber \\&\quad \le \left\| - \Delta \phi + F'(\phi )- \left( m_\infty - |\Omega |^{-1}\int _\Omega \phi \mathrm{{d}}x\right) \right\| _{(H^1(\Omega ))'}\nonumber \\&\quad \le \left\| - \Delta \phi + F'(\phi )-|\Omega |^{-1}\int _\Omega F'(\phi )\mathrm{{d}}x \right\| _{(H^1(\Omega ))'} \nonumber \\&\qquad + \left\| |\Omega |^{-1}\int _\Omega F'(\phi )\mathrm{{d}}x-\left( m_\infty -|\Omega |^{-1}\int _\Omega \phi \mathrm{{d}}x\right) \right\| _{(H^1(\Omega ))'}\nonumber \\&\quad = \left\| \mu - {\overline{\mu }} \right\| _{(H^1(\Omega ))'} + \left\| |\Omega |^{-1}\int _\Omega \mu \mathrm{{d}}x-|\Omega |^{-1}\int _\Omega \sigma \mathrm{{d}}x-m_u\right\| _{(H^1(\Omega ))'}\nonumber \\&\quad \le \left\| \mu - {\overline{\mu }} \right\| _{(H^1(\Omega ))'} + |\Omega |^{-1}\left| \int _\Omega (\mu - \sigma )\mathrm{{d}}x\right| + |m_u|\nonumber \\&\quad \le \left\| \mu - {\overline{\mu }} \right\| _{(H^1(\Omega ))'} + |\Omega |^{-1} \left( \int _\Omega \frac{1}{P(\phi )} \mathrm{{d}}x\right) ^\frac{1}{2}\left( \int _\Omega P(\phi )(\mu -\sigma )^2 \mathrm{{d}}x\right) ^\frac{1}{2}\nonumber \\&\qquad +|m_u|. \end{aligned}$$
(6.5)

By the Sobolev embedding \(H^2(\Omega )\hookrightarrow C({\overline{\Omega }})\) (\(n=2,3\)), the continuity as well as the strictly positivity of P(s), then it holds

$$\begin{aligned} \int _\Omega \frac{1}{P(\phi )} \mathrm{{d}}x \le |\Omega |\left( \min _{x\in {\overline{\Omega }}} P(\phi (x))\right) ^{-1}\le C, \end{aligned}$$

where the constant \(C>0\) depends on \(\Omega \), \(\Vert \phi \Vert _{H^2(\Omega )}\) and P.

On the other hand, on account of (1.6), (3.37), (6.2) and Poincaré’s inequality, since \(\theta \in (0,\frac{1}{2})\) and \(\sigma \in H^1(\Omega )\), we infer that

$$\begin{aligned}&|{\mathcal {E}}(\phi , \sigma )-\Upsilon (\phi )|^{1-\theta }&\quad \nonumber \\&\quad = \left| \frac{1}{2}\Vert \sigma \Vert _{L^2(\Omega )}^2-\frac{1}{2}|\Omega |( {\overline{\sigma }}+m_u)^2\right| ^{1-\theta }\nonumber \\&\quad \le \left( \frac{1}{2}\right) ^{1-\theta }\left( \int _{\Omega }(\sigma -{\overline{\sigma }})^2\mathrm{{d}}x +2|\Omega ||{\overline{\sigma }}||m_u| +|\Omega |m_u^2\right) ^{1-\theta }\nonumber \\&\quad \le C\Vert \nabla \sigma \Vert _{L^2(\Omega )}^{2(1-\theta )}+C\left( |m_u|^{1-\theta }+|m_u|^{2(1-\theta )}\right) \nonumber \\&\quad \le C\Vert \nabla \sigma \Vert _{L^2(\Omega )}+C|m_u|^\frac{1}{2}. \end{aligned}$$
(6.6)

Finally, since \(\Upsilon (\phi _\infty )={\mathcal {E}}(\phi _\infty ,\sigma _\infty )\) (recalling that \(\sigma _\infty \) is a constant satisfying (3.37)), we deduce from inequalities (6.5) and (6.6) that

$$\begin{aligned}&| {\mathcal {E}}(\phi , \sigma ) -{\mathcal {E}}(\phi _\infty , \sigma _\infty )|^{1-\theta } \\&\quad \le |{\mathcal {E}}(\phi , \sigma )-\Upsilon (\phi )|^{1-\theta }+ | \Upsilon (\phi ) -\Upsilon (\phi _\infty )|^{1-\theta }\\&\quad \le \left\| \mu - {\overline{\mu }} \right\| _{(H^1(\Omega ))'}+ C\Vert \nabla \sigma \Vert _{L^2(\Omega )} + C\Vert \sqrt{P(\phi )}(\mu -\sigma )\Vert _{L^2(\Omega )}+C|m_u|^\frac{1}{2}. \end{aligned}$$

The proof of Lemma 3.1 is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaterra, C., Rocca, E. & Wu, H. Long-Time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth. Appl Math Optim 83, 739–787 (2021). https://doi.org/10.1007/s00245-019-09562-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09562-5

Keywords

Mathematics Subject Classification

Navigation